首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

The effects of acute ingestion of nitrate on short-duration repeated sprint performance (RSP) are unclear. This study investigated the effect of acute ingestion of beetroot juice on a test of RSP in team sport athletes. Sixteen male team sport athletes undertook four trials using a 40 m maximum shuttle run test (MST), which incorporates 10 × 40 m shuttle sprints with 30 s between the start of each sprint. Two familiarisation trials, followed by nitrate-rich beetroot juice (BR; ~6 mmol nitrate) and nitrate-depleted beetroot juice (PLA; ~0.0034 mmol nitrate) trials were completed in a randomised, double-blind manner. Ingestion of beetroot juice 3 h prior to exercise elevated plasma nitrate concentrations ~6-fold in BR (BR, 413 ± 56 μM; PLA, 69 ± 30 μM; P < 0.001). RSP, assessed by sprint performance decrement (Sdec; %), did not differ (P = 0.337) between BR (5.31 ± 2.49%) and PLA (5.71 ± 2.61%). There was no difference between trials for total sprint time (P = 0.806), fastest sprint (P = 0.341), slowest sprint (P = 0.787), or post-exercise blood lactate concentration (BR, 11.8 ± 2.5 mM; PLA, 12.2 ± 2.3 mM; P = 0.109). Therefore, acute ingestion of beetroot juice did not improve a test of short-duration RSP in team sport athletes.  相似文献   

2.
In this study, we examined the effects of upper-body pre-cooling before intermittent sprinting exercise in a moderate environment. Seven male and three female trained cyclists (age 26.8±5.5 years, body mass 68.5±9.5?kg, height 1.76±0.13?m, [Vdot]O2peak 59.0±11.4?mL?·?kg?1?·?min?1; mean±s) performed 30?min of cycling at 50% [Vdot]O2peak interspersed with a 10-s Wingate cycling sprint test at 5?min intervals. The exercise was performed in a room controlled at 22oC and 40% relative humidity. In the control session, the participants rested for 30?min before exercise. In the pre-cooling session, the participants wore the upper segment of a liquid conditioning garment circulating 5oC coolant until rectal temperature decreased by 0.5oC. Rectal temperature at the start of exercise was significantly lower in the pre-cooling (36.5±0.3oC) than in the control condition (37.0±0.5oC), but this difference was reduced to a non-significant 0.4oC throughout exercise. Mean skin temperature was significantly lower in the pre-cooling (30.7±2.3oC) than in the control condition (32.5±1.6oC) throughout exercise. Heart rate during submaximal exercise was similar between the two conditions, although peak heart rate after the Wingate sprints was significantly lower in the pre-cooling condition. With pre-cooling, mean peak power (909±161?W) and mean overall power output (797±154?W) were similar to those in the control condition (peak 921±163?W, mean 806±156?W), with no differences in the subjective ratings of perceived exertion. These results suggest that upper-body pre-cooling does not provide any benefit to intermittent sprinting exercise in a moderate environment.  相似文献   

3.
Skeleton     
The aim of this study was to characterize sprint ability, anthropometry, and lower extremity power in the US National Team Skeleton athletes. Fourteen athletes (male n = 7; mean ± SD: height 1.794 ± 0.063 m, body mass 81.2 ± 3.7 kg, age 26.9 ± 4.1 years; female n = 7; 1.642 ± 0.055 m, 60.1 ± 5.9 kg, 27.3 ± 6.9 years) volunteered to participate. Sprinting ability was measured over multiple intervals using custom infrared timing gates in both an upright and a crouched sprint. The crouched sprint was performed while pushing a wheeled‐simulated skeleton sled on rails on an outdoor skeleton and bobsleigh start track. Crouched skeleton sprint starts were able to achieve about 70% to 85% of the upright sprint times. The mean somatotype ratings for females were: 3.5‐3.5‐2.1, and males: 3.6‐4.9‐1.9. Lower extremity strength and power were measured via vertical jumps on a portable force platform using squat and countermovement jumps, and jumps with added mass. Jump height, power, rate of force development and peak force were determined from force‐time data. Lower extremity strength and power were strongly correlated with both upright and crouched sprint times. The results indicated that these athletes are strong sprinters with varying body structures, mostly mesomorphic, and that stronger and more powerful athletes tend to be better starters.  相似文献   

4.
The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ~2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.  相似文献   

5.
This investigation compared the effects of external pre-cooling and mid-exercise cooling methods on running time trial performance and associated physiological responses. Nine trained male runners completed familiarisation and three randomised 5 km running time trials on a non-motorised treadmill in the heat (33°C). The trials included pre-cooling by cold-water immersion (CWI), mid-exercise cooling by intermittent facial water spray (SPRAY), and a control of no cooling (CON). Temperature, cardiorespiratory, muscular activation, and perceptual responses were measured as well as blood concentrations of lactate and prolactin. Performance time was significantly faster with CWI (24.5 ± 2.8 min; = 0.01) and SPRAY (24.6 ± 3.3 min; = 0.01) compared to CON (25.2 ± 3.2 min). Both cooling strategies significantly (< 0.05) reduced forehead temperatures and thermal sensation, and increased muscle activation. Only pre-cooling significantly lowered rectal temperature both pre-exercise (by 0.5 ± 0.3°C; < 0.01) and throughout exercise, and reduced sweat rate (< 0.05). Both cooling strategies improved performance by a similar magnitude, and are ergogenic for athletes. The observed physiological changes suggest some involvement of central and psychophysiological mechanisms of performance improvement.  相似文献   

6.
Carbohydrate mouth rinse (CMR) is a novel method proposed to enhance endurance performance lasting ≤ 60 min. The current study examined the influence of CMR on anaerobic performance tasks in 11 collegiate female soccer players after an overnight fast. Athletes completed two experimental sessions, during which carbohydrate (CHO; 6% maltodextrin) or taste- and colour-matched placebo (PLA) mouth-rinse solutions were administered in a counterbalanced, double-blinded design. Three rounds of a 5-min scrimmage bout and series of performance tests including a single countermovement vertical jump (1VJ), a set of four consecutive vertical jumps, a 72-m shuttle run (SR72) and 18-m sprint comprised each trial. Thirst sensation (TS), session TS, ratings of perceived exertion (RPE) and session RPE were assessed as secondary outcomes. The first SR72 approached significance (p = 0.069), but no significant between-trials differences were observed for any of the mean performance tasks. The highest 1VJ scores did not differ for the first (CHO = 47.3 ± 3.4, PLA = 47.7 ± 3.5 cm; p = 0.43), second (CHO = 48.0 ± 4.1, PLA = 47.9 ± 3.5 cm; p = 0.82) or third bout (CHO = 47.4 ± 3.9, PLA = 48.1 ± 3.9 cm; p = 0.26). TS approached significance (p = 0.053) during the first bout. No significant differences (p > 0.05) were found for any of the perceptual variables. Current results fail to support ergogenic influence of CMR on anaerobic performance tasks in collegiate female athletes.  相似文献   

7.
Background:In a sprint cross-country(XC)ski competition,the difference in recovery times separating the first and the second semi-final(SF)heats from the final(F)may affect performance.The aim of the current study was to compare the effects of longer vs.shorter recovery periods prescribed between the 3 knock-out races of a simulated sprint XC ski competition involving a prologue(P),quarter-final(QF),SF,and F.Methods:Eleven well-trained XC ski athletes completed 2 simulated sprint XC ski competitions on a treadmill involving 4×883-m roller-ski bouts at a 4°incline using the gear 3 ski-skating sub-technique.The first 3 bouts were completed at a fixed speed(PFIX,QFFIX,and SFFIX)corresponding to~96%of each individual’s previously determined maximal effort.The final bout was performed as a self-paced sprint time trial(FSTT).Test conditions differed by the time durations prescribed between the QFFIX,SFFIX,and FSTT,which simulated real-world XC ski competition conditions using maximum(MAX-REC)or minimum(MIN-REC)recovery periods.Results:The FSTT was completed 5.4±5.5 s faster(p=0.009)during MAX-REC(179.2±18.1 s)compared to MIN-REC(184.6±20.0 s),and this was linked to a significantly higher power output(p=0.010)and total metabolic rate(p=0.009).The pre FSTT blood lactate(BLa)concentration was significantly lower during MAX-REC compared to MIN-REC(2.5±0.8 mmol/L vs.3.6±1.6 mmol/L,respectively;p=0.027),and the pre-to-post FSTT increase in BLa was greater(8.8±2.1 mmol/L vs.7.1±2.3 mmol/L,respectively;p=0.024).No other differences for MAX-REC vs.MIN-REC reached significance(p>0.05).Conclusion:Performance in a group of well-trained XC skiers is negatively affected when recovery times between sprint heats are minimized which,in competition conditions,would occur when selecting the last QF heat.This result is combined with a higher pre-race BLa concentration and a reduced rise in BLa concentration under shorter recovery conditions.These findings may help inform decision making when XC skiers are faced with selecting a QF heat within a sprint competition.  相似文献   

8.
The aim of this study was to evaluate the reliability of two long jump tasks and their ability to predict 10 m sprint performance in elite adolescent female athletes. Eight junior national-level female track and field athletes completed three standing (SLJ) and reactive long jumps (RLJ) on portable force plates, followed by three 10 m sprints. Intra-class correlation coefficients (ICC) and coefficients of variation (CV) were calculated to examine reliability. Linear regression results identified the best predictor of average and best 10 m sprint time from the jump kinematic and kinetic measures. The ICCs and CVs indicated good reliability for the majority of kinetic measures however, better reliability was reported for the SLJ. The SLJ was a good predictor of best and average 10 m sprint time, with average horizontal power the best predictor of performance (best; R 2 = 0.751, p = 0.003, Standard Error of Estimate (SEE)% = 2.2 average; R 2 = 0.708, p = 0.005, SEE% = 2.5).  相似文献   

9.
Acute ingestion of ketone salts induces nutritional ketosis by elevating β-hydroxybutyrate (βHB), but few studies have examined the metabolic effects of ingestion prior to exercise. Nineteen trained cyclists (12 male, 7 female) undertook graded exercise (8 min each at ~30%, 40%, 50%, 60%, 70%, and 80% VO2peak) on a cycle ergometer on two occasions separated by either 7 or 14 days. Trials included ingestion of boluses of either (i) plain water (3.8?mL?kg?body mass?1) (CON) or (ii) βHB salts (0.38?g?kg?body mass?1) in plain water (3.8?mL?kg body mass?1) (KET), at both 60 min and 15 min prior to exercise. During KET, plasma [βHB] increased to 0.33?±?0.16?mM prior to exercise and 0.44?±?0.15?mM at the end of exercise (both p?.05). Plasma glucose was 0.44?±?0.27?mM lower (p?.01) 30?min after ingestion of KET and remained ~0.2?mM lower throughout exercise compared to CON (p?.001). Respiratory exchange ratio (RER) was higher during KET compared to CON (p?.001) and 0.03–0.04 higher from 30%VO2peak to 60%VO2peak (all p?.05). No differences in plasma lactate, rate of perceived exertion, or gross or delta efficiency were observed between trials. Gastrointestinal symptoms were reported in 13 out of 19 participants during KET. Acute ingestion of βHB salts induces nutritional ketosis and alters the metabolic response to exercise in trained cyclists. Elevated RER during KET may be indicative of increased ketone body oxidation during exercise, but at the plasma βHB concentrations achieved, ingestion of βHB salts does not affect lactate appearance, perceived exertion, or muscular efficiency.  相似文献   

10.
This investigation examined the oxidative stress (F2-Isoprostane; F2-IsoP) and inflammatory (interleukin-6; IL-6) responses to repeat-sprint training in hypoxia (RSH). Ten trained male team sport athletes performed 3(sets)*9(repetitions)*5?s cycling sprints in simulated altitude (3000?m) and sea-level conditions. Mean and peak sprint power output (MPO and PPO) were recorded, and blood samples were collected pre-exercise, and again at 8 and 60?min post-exercise. Both MPO and PPO were significantly reduced in hypoxia (compared to sea-level) in the second (MPO: 855?±?89 vs. 739?±?95?W, p?=?.006; PPO: 1024?±?114 vs. 895?±?112?W, p?=?.010) and third (MPO: 819?±?105 vs. 686?±?83?W, p?=?.008; PPO: 985?±?125 vs. 834?±?99?W, p?=?.008) sets, respectively. IL-6 was significantly increased from pre- to 1?h post-exercise in both hypoxia (0.7?±?0.2 vs. 2.4?±?1.4?pg/mL, p?=?.004) and sea-level conditions (0.7?±?0.2 vs. 1.6?±?0.3?pg/mL, p?d?=?0.80) suggesting higher IL-6 levels of post-hypoxia. F2-IsoP was significantly lower 1?h post-exercise in both the hypoxic (p?=?.005) and sea-level (p?=?.002) conditions, with no differences between trials. While hypoxia can impact on exercise intensity and may result in greater post-exercise inflammation, it appears to have little effect on oxidative stress. These results indicate that team sport organisations with ready access to hypoxic training facilities could confidently administer RSH without significantly increasing the post-exercise inflammatory or oxidative stress response.  相似文献   

11.
ABSTRACT

This study examined the effects of lower-body compression garments on perceived recovery and subsequent performance in basketball athletes. In a parallel-group design, 30 recreational, male basketball athletes were randomly allocated to either a control (CON, n = 15, loose-fitting clothing) or experimental group (COMP, n = 15, compression garments) for 15 h following fatigue-inducing, basketball-specific exercise in the evening (1600-1800 h). Perceptual measures of fatigue and muscle soreness, as well as physical performance tests (sprints, jumps and agility), were performed pre-exercise, post-exercise, and post-recovery (15 h following exercise). Subjective and objective measures of sleep were recorded following the exercise trial. There were non-significant (p > 0.05), unclear-trivial differences between groups for all performance measures. Perceived post-recovery fatigue (d = ?1.27, large) and muscle soreness (d = ?1.61, large) were significantly lower in COMP compared to CON (p < 0.05). COMP exhibited better perceived sleep quality (d = 0.42, small, p = 0.18) than CON, with an unclear difference in sleep duration between groups (p > 0.05). Wearing lower-body compression garments overnight improved perceived fatigue and muscle soreness, but had negligible effects on subsequent physical performance in basketball athletes. Future research should focus on longer periods of compression wear following fatiguing exercise.  相似文献   

12.
Abstract

Six games players (GP) and six endurance‐trained runners (ET) completed a standardized multiple sprint test on a non‐motorized treadmill consisting often 6‐s all‐out sprints with 30‐s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 ± 114 vs 777 ± 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 ± 0.3 vs 6.71 ± 0.3 m s‐1, N.S.), but had a greater decrement in mean power output than endurance‐trained runners (GP vs ET: 29.3 ± 8.1% vs 14.2 ± 11.1%, P < 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 ± 1.9 vs 12.4 ± 1.7 mM, P < 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 ± 0.08 vs 0.28 ± 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P < 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P<0.01). The average increase in oxygen uptake above pre‐exercise levels during the sprint test was greater for endurance‐trained athletes than for the games players (ET vs GP: 35.0 ± 2.2 vs 29.6 ± 3.0 ml kg‐1 min‐1 , P < 0.05), corresponding to an average oxygen uptake per sprint (6‐s sprint and 24 s of subsequent recovery) of 67.5 ± 2.9% and 63.0 ± 4.5% VO 2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre‐exercise values during the sprint test and mean speed fatigue (r = ‐0.68, P < 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

13.
β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min?1) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists’ experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (–1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete’s “belief” as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia.  相似文献   

14.
Abstract

Strength training and positive energy intake are the most important factors related to lean body mass (LBM) gain. Most studies investigating weight-gain interventions are based recreationally active subjects and less is known about optimal weight-gain protocols in elite athletes. The purpose of this study was to evaluate the effect of nutritional guidance in an 8- to 12-week weight-gain period in elite athletes. Thirty-nine elite athletes were randomised to either a ‘nutritional counseling group’ (NCG, n=21, 19.1±2.9 years, 70.9±8.9 kg) or ‘ad libitum group’ (ALG, n=18, 19.6±2.7 years, 75.0±5.9 kg). All athletes continued their sport-specific training which included an additional four strength-training sessions per week. NCG followed a meal plan providing a positive energy balance, while the ALG athletes had an ad libitum energy intake. Body weight (BW), body composition, one repetition maximum (1RM), 40 m sprint and counter movement jump (CMJ) were measured pre- and post-intervention. Energy intake was higher in the NCG than in the ALG (3585±601 vs. 2964±884 kcal) and consequently BW increased more in NCG than in ALG (3.9±0.6% vs. 1.5±0.4%). Fat mass (FM) increased more in NCG than in ALG (15±4 vs. 3±3%), but gain in LBM was not different between groups. All 1RM results improved in both groups (6–12%), whereas 40 m sprint and CMJ remained unchanged, except for a significant decrease in 40 m sprint for the athletes in NCG. Athletes with nutritional guidance increased BW more, however, excess energy intake in a weight-gain protocol should be considered carefully due to undesirable increases in body fat.  相似文献   

15.
ABSTRACT

The skating acceleration to maximal speed transition (sprint) is an essential skill that involves substantial lower body strength and effective propulsion technique. Coaches and athletes strive to understand this optimal combination to improve performance and reduce injury risk. Hence, the purpose of this study was to compare body centre of mass and lower body kinematic profiles from static start to maximal speed of high calibre male and female ice hockey players on the ice surface. Overall, male and female skaters showed similar centre of mass trajectories, though magnitudes differed. The key performance difference was the male’s greater peak forward skating speed (8.96 ± 0.44 m/s vs the females’ 8.02 ± 0.36 m/s, p < 0.001), which was strongly correlated to peak leg strength (R 2 = 0.81). Males generated greater forward acceleration during the initial accelerative steps, but thereafter, both sexes had similar stride-by-stride accelerations up to maximal speed. In terms of technique, males demonstrated greater hip abduction (p = 0.006) and knee flexion (p = 0.026) from ice contact to push off throughout the trials. For coaches and athletes, these findings underscore the importance of leg strength and widely planted running steps during the initial skating technique to achieve maximal skating speed over a 30 m distance.  相似文献   

16.
It seems that dehydration may impair decision-making performance in athletes. Purpose: This study aimed to investigate the influence of dehydration on passing decision-making performance in soccer players. Method: Participants were 40 male soccer players (Mage = 22.3 ± 2.3 years) who agreed to participate in the study and were randomly assigned to the following conditions: control (CON), dehydration (DEH), and euhydration (EUH). The players played in 2 games of 90 min in duration (2 45-min halves) followed by 2 15-min halves (overtime) with and without proper hydration. The Game Performance Assessment Instrument (GPAI) was considered for the analysis of passing decision making. Results: The GPAI analysis indicated effective reduction in the decision-making index in the DEH condition compared with the EUH and CON conditions, F(2, 38) = 31.4, < .05, ES = 0.8. Conclusions: In conclusion, dehydration may be considered a mediating factor in the passing decision-making performance of male soccer athletes.  相似文献   

17.
ABSTRACT

The objective of this study was to analyse the effect of the use of social networks in smartphones or playing video games on the passing decision-making performance in professional soccer athletes. Participants were 25 male professional soccer athletes (mean ± SD: age 23.4 ± 2.8 years). The participants performed three randomised conditions divided into three groups: control (CON), smartphone (SMA), and video game (VID). Before and after each experimental condition, the Stroop Task assessed the level of induced mental fatigue. Then, the athletes performed a simulated soccer match. A CANON® camera recorded the matches for further analysis on passing decision-making performance. A group effect was identified (< .01) with impairment on passing decision-making performance for the SMA (p = .01, ES = 0.5) and VID (p = .01, ES = 0.5) conditions. We concluded that the use of social networks on smartphones and/or playing video games right before official soccer matches might impair the passing decision-making performance in professional soccer athletes.  相似文献   

18.
This study compared the effects of a hand cooling glove (~16°C water temperature; subatmospheric pressure of ?40 mmHg) and a cooling jacket (CJ) on post-exercise cooling rates (gastrointestinal core temperature, Tc; skin temperature, Tsk) and cognitive performance (the Stroop Colour–Word test). Twelve male athletes performed four trials (within subjects, counterbalanced design) involving cycling at a workload equivalent to 75% ?O2max in heat (35.7?±?0.2°C, 49.2?±?2.6% RH) until a Tc of 39°C or exhaustion occurred. A 30-min cooling period (in 22.3?±?0.3°C, 42.1?±?3.6% RH) followed, where participants adopted either one-hand cooling (1H), two-hand cooling (2H), wore a CJ or no cooling (NC). No significant differences were seen in Tc and Tsk cooling rates between trials; however, moderate effect sizes (d?=?0.50–0.76) suggested Tc cooling rates to be faster for 1H, 2H and CJ compared to NC after 5 min; 1H and CJ compared to NC after 10 min and for CJ to be faster than 2H at 25–30 min. Reaction times on the cognitive test were similar between all trials after the 30 min cooling/no-cooling period (p?>?.05). In conclusion, Tc cooling rates were faster with 1H and CJ during the first 10 min compared to NC, with minimal benefit associated with 2H cooling. Reaction time responses were not impacted by the use of the glove(s) or CJ.  相似文献   

19.
ABSTRACT

Purpose: To evaluate vascular function and its relationship to cardiorespiratory fitness in professional handball athletes. Method: We examined 30 male professional handball athletes (age 27 ± 4 y) and 10 male sedentary controls (age 26 ± 5 y) at rest. The workup included exercise testing via ergometry. To assess vascular function, a validated electronic model of the arterial tree (vasc assist 2®) was used. It replicates noninvasively acquired pulse pressure waves by modulating the relevant functional parameters of compliance, resistance, inertia, pressure, and flow. The maximum oxygen uptake (VO2max) was estimated using the validated heart rate ratio method. Results: Athletes had a significantly lower systolic and diastolic central blood pressure (cBP) compared to controls (102 ± 9/60 ± 9 vs. 110 ± 8/74 ± 9 mmHg, p < .01), whereas aortic pulse wave velocity (PWV) (6.2 ± 0.8 vs. 6.3 ± 0.5 m/s, p = .45) and augmentation index at a heart rate of 75 (Aix@75) (?4 ± 12 vs. ?13 ± 16%, p = .06) were not different. Resistance index (R) (15.9 ± 4.4 vs. 10.6 ± 0.6, p = .001) and maximum power output (MPO) (3.55 ± 0.54 vs. 2.46 ± 0.55 Watt/kg, p < .001) were significantly higher in athletes compared to controls. We found no relevant correlation between MPO, resting heart rate, PWV, Aix@75, and cBP. A higher VO2max (p = .02) and a lower R (p < .01) were significant predictors of a higher MPO in athletes. Conclusion: R had an independent and strong correlation to MPO in athletes, which might help to disentangle the contribution of aerobic capacity and arterial function to physical power.  相似文献   

20.
Abstract

The aim of this study was to characterise the acceleration and sprint profiles of elite football match play in one Norwegian elite football team (Rosenborg FC). Fifteen professional players in five playing positions took part in the study (n = 101 observations). Player movement was recorded during every domestic home game of one full season (n = 15) by an automatic tracking system based on microwave technology. Each player performed 91 ± 21 accelerations per match, with a lower number in the second compared with the first half (47 ± 12 vs. 44 ± 12). Players in lateral positions accelerated more often compared to players in central positions (98.3 ± 20.5 vs. 85.3 ± 19.5, p < 0.05). Average sprint distance was 213 ± 111 m distributed between 16.6 ± 7.9 sprints, with no differences between first (106 ± 60 m, 8.2 ± 4.2 sprints) and second halves (107 ± 72 m, 8.3 ± 4.8 sprints). Players in lateral positions sprinted longer distances (287 ± 211 m vs. 160 ± 76 m, p < 0.05) and tended to sprint more often (21.6 ± 7.8 vs. 13.0 ± 5.7, p = 0.064) compared to players in central positions. We found more walking and less of the more intense activities during the last third of the season compared to the first. The main finding in this study was that Norwegian elite players had substantially less number of accelerations and fewer but longer sprints than previous studies reported for higher-ranked leagues. Also, less high-intensity activity was found towards the end of the season. Ultimately, these data provide useful information for the fitness coach (1) in planning of position-specific football training and (2) to avoid the decline in high-intensity activities the last third of the competitive season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号