首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Eleven elite kayakers performed an identical weekly training schedule each week during a 3-week training-camp. The Profile of Mood States (POMS) inventory (“right now” instructions) was completed before and after selected workouts each week to assess both training-induced mood disturbances and the extent of recovery following short and long rest. The ratio of POMS vigour to POMS fatigue scores was used as an “energy index”. Energy index scores were compared with ratings of perceived exertion (RPE) to address the size of the training load. Performance measures were obtained during the first and last week. The results showed that the energy index decreased (p<0.01) throughout the camp and did not return to initial values following either the short (one night) or long rest (two nights and one day). Performance measures and RPE remained unaffected throughout training, as did the POMS depression scores, indicating that the athletes experienced an overreached state but did not develop staleness. Our results suggest that repeated evaluation using POMS fatigue, vigour, and depression scores during periods of intensified training may help prevent athletes from becoming severely overreached and reduce the likelihood of staleness.  相似文献   

2.
The psychobiological status of cyclists over a period of 8 months of training was assessed by measuring the sympatho-adrenal level, the central noradrenergic activity, and the cortisol?-?testosterone ratio status non-invasively. Alteration of these indices after a large increase in training load lasting 4 days (?+?187%) was also examined. Urinary excretion of methoxyamines (metanephrine, normetanephrine) and 3-methoxy-4-hydroxyphenylglycol sulphate (MHPG-S), and salivary concentrations of cortisol and testosterone, were measured in 12 national cyclists after a non-specific training period and 48 h before 4 days of increased training (T1), after these 4 days (T2) and at the end of 4 months of specific training (T3). Urinary and salivary samples were also collected during a rest period (T0). At each of these times, mood states and ratings of perceived muscle soreness were assessed, and a questionnaire of early clinical symptoms of the overtraining syndrome (Profile of Mood States) was administered. A significant increase in normetanephrine (P <?0.05) and a decrease in the testosterone?-?cortisol ratio (P <?0.05) were observed at T2, while MHPG-S excretion remained unchanged. Over the same periods, increased training loads did not induce mood disturbances. Eight months of training were associated with significant alterations in metanephrine (P?<?0.05) and MHPG-S (P?<?0.05). These results suggest a dissociation between the neural and endocrine catecholaminergic components systems. Opposite responses between MHPG-S and Profile of Mood States scores show that further investigations are needed to understand the relationship between central noradrenergic function, which is recognized as a regulatory factor of mood, and psychological tests measuring mood.  相似文献   

3.
The psychobiological status of cyclists over a period of 8 months of training was assessed by measuring the sympatho-adrenal level, the central noradrenergic activity, and the cortisol-testosterone ratio status noninvasively. Alteration of these indices after a large increase in training load lasting 4 days (+ 187%) was also examined. Urinary excretion of methoxyamines (metanephrine, normetanephrine) and 3-methoxy-4-hydroxyphenylglycol sulphate (MHPG-S), and salivary concentrations of cortisol and testosterone, were measured in 12 national cyclists after a non-specific training period and 48 h before 4 days of increased training (T1), after these 4 days (T2) and at the end of 4 months of specific training (T3). Urinary and salivary samples were also collected during a rest period (T0). At each of these times, mood states and ratings of perceived muscle soreness were assessed, and a questionnaire of early clinical symptoms of the overtraining syndrome (Profile of Mood States) was administered. A significant increase in normetanephrine (P < 0.05) and a decrease in the testosterone-cortisol ratio (P < 0.05) were observed at T2, while MHPG-S excretion remained unchanged. Over the same periods, increased training loads did not induce mood disturbances. Eight months of training were associated with significant alterations in metanephrine (P < 0.05) and MHPG-S (P < 0.05). These results suggest a dissociation between the neural and endocrine catecholaminergic components systems. Opposite responses between MHPG-S and Profile of Mood States scores show that further investigations are needed to understand the relationship between central noradrenergic function, which is recognized as a regulatory factor of mood, and psychological tests measuring mood.  相似文献   

4.
Abstract

In this study, we examined the effect of rapidly increased training volume and intensity on hormonal responses (salivary cortisol [C] and urinary dehydroepiandrosterone sulphate [DHEA-S]) and recovery-stress state perceived by 12 female cyclists. Over the 4-day experimental period, there was an average increase in training load of approximately 122% compared with that during the previous 12 days. Scores on subscales of the Recovery Stress Questionnaire for Athletes increased for the somatic component of stress (Fatigue, Emotional Stress and Social Stress; P < 0.05) and decreased the factor indicating recovery (General Well Being; P < 0.05) after the heavy training period. The training programme increased resting concentrations of salivary cortisol (P < 0.05) and decreased the DHEA-S/C ratio (P < 0.05). The increase in training load of cyclists was correlated with this hormonal ratio (r = ?0.48, P < 0.05). Changes in resting cortisol concentration as a result of heavy training stress were positively related to the change in Physical Complaints (r = 0.69, P < 0.01). Negative relationships were also found between changes in the DHEA-S/C ratio and changes in the somatic component of stress. The present results suggest that there is a dose–response relationship between increased training load, resting DHEA-S/C ratio and subjective assessment of stress and recovery, implying that this ratio could be used as an indicator of training status in female athletes.  相似文献   

5.
Abstract

The aim of this study was to determine whether an exogenous sodium lactate infusion increases blood lactate concentration and decreases performance during a 20-km time-trial. Highly trained male cyclists performed a 20-km time-trial with a saline (control) or sodium lactate infusion. Sodium lactate was infused at rates previously observed to raise blood lactate concentration by 2 mmol·l?1 in trained individuals cycling at 65% of maximum oxygen uptake. Blood lactate concentration increased (P≤0.0001) during both the control and sodium lactate trials compared with rest, with peak values of 9.6 and 10.6 mmol·l?1, respectively. The increase in sodium lactate over time was not significantly different from the control (P=0.34). Time to complete the time-trial and average power for the time-trial were not significantly different between the control (25.72±0.80 min; 348.0±32.4 W) and sodium lactate trials (25.58±0.93 min; 352.6±39.3 W). In addition, rating of perceived exertion, heart rate, and respiratory parameters did not differ between trials. In conclusion, when exogenous lactate is infused during a 20-km cycling time-trial, an exercise bout performed above the maximal lactate steady state, blood lactate concentration did not increase. Furthermore, exogenous lactate infusion did not decrease exercise performance, increase perceived exertion, or change respiratory parameters. Because lactate per se did not change performance outcomes or measured perceived exertion, we suggest that alternative objective measures of exercise intensity and performance be explored.  相似文献   

6.
Abstract

The aim of this study was to investigate whether different phases of training affect oxidative stress and antioxidant defences in professional cyclists. Ten professional cyclists, aged 21.8 ± 2.5 years, were enrolled in the study. They were classified into two groups of five athletes each one with similar nutritional intake excepting for the overload of vitamin C (1000 mg day?1) and E (400 mg day?1) supplementation in one of them. The cyclists of both groups performed the same exercise design, consisting of hard, tapering and recovery training periods. Total antioxidant capacity (TAC) of the diet, plasma oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), DNA damage (8-OHdG) and erythrocyte glutathione disulfide/glutathione ratio (GSSG:GSH?1) were measured. During the intense exercise trainings, the cyclists without vitamin supplements had the TAC of diet significantly lower than the supplemented group. Plasma ORAC, LPO and 8-OHdG were similar in both groups of athletes. Athletes with supplements had a basal LPO:ORAC?1 ratio lower than that without supplements, but this ratio converged to the same level at the end of the training in both groups of cyclists. Both groups of cyclists showed similar changes in GSSG:GSH?1 ratio and in GSSG and GSH levels along the study. The data suggest that well-trained athletes with suitable ultra-endurance training volume and intensity do not require antioxidant vitamin supplements to adapt their endogenous antioxidant defenses to exercise-induced ROS.  相似文献   

7.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

8.
Abstract

The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   

9.
The aim of this study was to determine the alterations in oxygen uptake kinetics following endurance training in previously trained athletes. Sixteen competitive cyclists completed 8 weeks of supervised endurance cycle training. Ventilatory threshold, maximal oxygen uptake (VO2max), oxygen uptake kinetics and simulated 40-km time-trial tests were performed three times over a 4-week period before training, and then after 4 and 8 weeks of training. The protocol for measuring oxygen uptake kinetics consisted of three square-wave increments from unloaded cycling to a power output of 78 W followed by a single increment from 78 to 156 W. No significant differences in any variables were observed over the pre-training period. The ventilatory threshold and VO2max increased, and the time for 40 km decreased (P < 0.05) with training. Shorter VO2 time constants and lower heart rates were observed during the protocol for measuring oxygen uptake kinetics (same absolute power output) post-training. These results indicate that oxygen uptake kinetics may be improved with endurance training in previously trained athletes.  相似文献   

10.
In this study, we assessed age-related changes in indoor 16.1-km cycling time-trial performance in 40 competitive male cyclists aged 25-63 years. Participants completed two tests: (1) a maximal ramped Kingcycle ergometer test, with maximal ramped minute power (RMPmax, W) recorded as the highest mean external power during any 60 s and maximal heart rate (HRmax, beats min(-1)) as the highest value during the test; and (2) an indoor Kingcycle 16.1-km time-trial with mean external power output (W), heart rate (beats min(-1)), and pedal cadence (rev min(-1)) recorded throughout the event. Results revealed age-related declines (P < 0.05) in absolute and relative time-trial external power output [(24 W (7.0%) per decade], heart rate [7 beats min(-1) (3.87%) per decade], and cadence [3 rev min(-1) (3.1%) per decade]. No relationships (P > 0.05) were observed for mean power output and heart rate recorded during the time-trial versus age when expressed relative to maximal ramped minute power and maximal heart rate respectively. Strong relationships (P < 0.05) were observed for maximal ramped minute power and time-trial power (r= 0.95) and for maximal heart rate and time-trial heart rate (r= 0.95). Our results show that indoor 16.1-km time-trial performance declines with age but relative exercise intensity (%RMPmax and %HRmax) does not change.  相似文献   

11.
Abstract

The aim of this study was to monitor biological markers of inflammation and oxidative stress, mood states, and recovery-stress states throughout an entire season in male handball players. Fourteen handball players (age 20.1±2.5 years) with a regular training and competitive background in handball (11.0±3.7 years) from the same club volunteered to participate. All participants completed 40 weeks of training. The training load was increased progressively throughout the season. Blood samples were collected and questionnaires were administered during preparatory, competitive, and recovery periods. Blood C-reactive protein and oxidized glutathione (GSSG) concentrations increased during periods of high load, while the reduced/oxidized glutathione ratio (GSH/GSSG) decreased. These changes were accompanied by a significant increase in total leukocyte count. Positive correlations were found between C-reactive protein, GSSG, GSH/GSSG ratio, and training load. No changes were observed in the Total Mood Disturbance score of the Profile of Mood States (POMS). However, scores on some Recovery-Stress Questionnaire for Athletes subscales, such as Injury, Physical Recovery, and Being in Shape, correlated with training load. Findings indicate that during periods of high training load, handball players developed a low grade of inflammation and oxidative state. Results support the usefulness of monitoring psychological and biological markers of inflammation, oxidative stress, and training load during season.  相似文献   

12.
In this study, we examined the effect of rapidly increased training volume and intensity on hormonal responses (salivary cortisol [C] and urinary dehydroepiandrosterone sulphate [DHEA-S]) and recovery-stress state perceived by 12 female cyclists. Over the 4-day experimental period, there was an average increase in training load of approximately 122% compared with that during the previous 12 days. Scores on subscales of the Recovery Stress Questionnaire for Athletes increased for the somatic component of stress (Fatigue, Emotional Stress and Social Stress; P<0.05) and decreased the factor indicating recovery (General Well Being; P<0.05) after the heavy training period. The training programme increased resting concentrations of salivary cortisol (P<0.05) and decreased the DHEA-S/C ratio (P<0.05). The increase in training load of cyclists was correlated with this hormonal ratio (r=-0.48, P<0.05). Changes in resting cortisol concentration as a result of heavy training stress were positively related to the change in Physical Complaints (r=0.69, P<0.01). Negative relationships were also found between changes in the DHEA-S/C ratio and changes in the somatic component of stress. The present results suggest that there is a dose-response relationship between increased training load, resting DHEA-S/C ratio and subjective assessment of stress and recovery, implying that this ratio could be used as an indicator of training status in female athletes.  相似文献   

13.
Abstract

The aim of the study was to explore pre-competition training practices of elite endurance runners. Training details from elite British middle distance (MD; 800 m and 1500 m), long distance (LD; 3000 m steeplechase to 10,000 m) and marathon (MAR) runners were collected by survey for 7 days in a regular training (RT) phase and throughout a pre-competition taper. Taper duration was [median (interquartile range)] 6 (3) days in MD, 6 (1) days in LD and 14 (8) days in MAR runners. Continuous running volume was reduced to 70 (16)%, 71 (24)% and 53 (12)% of regular levels in MD, LD and MAR runners, respectively (P < 0.05). Interval running volume was reduced compared to regular training (MD; 53 (45)%, LD; 67 (23)%, MAR; 64 (34)%, P < 0.05). During tapering, the peak interval training intensity was above race speed in LD and MAR runners (112 (27)% and 114 (3)%, respectively, P < 0.05), but not different in MD (100 (2)%). Higher weekly continuous running volume and frequency in RT were associated with greater corresponding reductions during the taper (R = ?0.70 and R = ?0.63, respectively, both P < 0.05). Running intensity during RT was positively associated with taper running intensity (continuous intensity; R = 0.97 and interval intensity; R = 0.81, both P < 0.05). Algorithms were generated to predict and potentially prescribe taper content based on the RT of elite runners. In conclusion, training undertaken prior to the taper in elite endurance runners is predictive of the tapering strategy implemented before competition.  相似文献   

14.
We compared the effects of (1) accurate and (2) surreptitiously augmented performance feedback on power output and physiological responses to a 4000 m time-trial in the heat. Nine cyclists completed a baseline (BaseL) 4000 m time-trial in ambient temperatures of 30°C, followed by two further 4000 m time-trials at the same temperature, randomly assigning the participants to an accurate (ACC; accurate feedback of baseline) or deceived (DEC; 2% increase above baseline) feedback group. The total power output (PO) and aerobic (Paer) and anaerobic (Pan) contributions were determined at 0.4 km stages during the time-trials, alongside measurements of rectal (Trec) and skin (Tskin) temperatures. There were no differences (P > 0.05) in any of the variables between BaseL, ACC and DEC, despite increases (P < 0.05) in Trec and Tskin. Typical pacing profiles were demonstrated; however, there was no interaction (P > 0.05) between feedback condition and time-trial stage. Providing surreptitiously augmented performance feedback to well-trained cyclists did not alter their performance or physiological responses to a 4000 m time-trial in a hot environment. The assumed influence of augmented performance feedback was nullified in the heat, perhaps reflecting a central down-regulation of exercise intensity in response to an increased body temperature.  相似文献   

15.
The aims of this study were to compare the physiological demands of laboratory- and road-based time-trial cycling and to examine the importance of body position during laboratory cycling. Nine male competitive but non-elite cyclists completed two 40.23-km time-trials on an air-braked ergometer (Kingcycle) in the laboratory and one 40.23-km time-trial (RD) on a local road course. One laboratory time-trial was conducted in an aerodynamic position (AP), while the second was conducted in an upright position (UP). Mean performance speed was significantly higher during laboratory trials (UP and AP) compared with the RD trial (P < 0.001). Although there was no difference in power output between the RD and UP trials (P > 0.05), power output was significantly lower during the AP trial than during both the RD (P = 0.013) and UP trials (P = 0.003). Similar correlations were found between AP power output and RD power output (r = 0.85, P = 0.003) and between UP power output and RD power output (r = 0.87, P = 0.003). Despite a significantly lower power output in the laboratory AP condition, these results suggest that body position does not affect the ecological validity of laboratory-based time-trial cycling.  相似文献   

16.
Purpose: Several studies have demonstrated that physiological variables predict cycling endurance performance. However, it is still unclear whether the predictors will change over different performance durations. The aim of this study was to assess the correlations between physiological variables and cycling time trials with different durations. Methods: Twenty trained male cyclists (maximal oxygen uptake [VO2max] = 60.5 ± 5.6 mL/kg/min) performed 4 separate experimental trials during a 2-week period. Cyclists initially completed an incremental exercise test until volitional exhaustion followed by 3 maximal cycling time trials on separate days. Each time trial consisted of 3 different durations: 5 min, 20 min, and 60 min performed in a randomized order. Results: The main results showed that the physiological measures strongly correlated with long cycling performances rather than short and medium time trials. The time-trial mean power output was moderately high to highly correlated with peak power output and VO2max (r = .61–.87, r = .72–.89, respectively), and was moderately to highly correlated with the lactate threshold Dmax method and second ventilatory threshold (r = .52–.75, r = .55–.82, respectively). Conclusions: Therefore, trained cyclists should develop maximal aerobic power irrespective of the duration of time trial, as well as enhancements in metabolic thresholds for long-duration time trials.  相似文献   

17.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

18.
Abstract

To clarify the physical and mental fatigue caused by intense exercise and the relationship between the two types of fatigue, we examined changes in anthropometric and biochemical variables, neutrophil function, and the Profile of Mood States (POMS) questionnaire in 13 female university judoists attending a one-week training camp. Blood glucose, total cholesterol, haemoglobin, leukocyte count, IgG, and phagocytic activity all decreased after the training camp compared with baseline (P ≤ 0.046). Aspartate aminotransferase, lactate dehydrogenase, creatine kinase, and neutrophil oxidative burst activity increased after the training camp (P ≤ 0.007). Of the POMS scores, that for Fatigue increased after the training camp (P = 0.041) and that for Vigour decreased (P = 0.042). The changes in several POMS scores correlated with the changes in blood biochemical variables. In particular, the change in Total mood disturbance was negatively associated with changes in myogenic enzymes (P ≤ 0.032). Our results suggest that intense exercise during training camps for female judoists leads to the appearance and accumulation of mental and physical fatigue, which are related to each other.  相似文献   

19.
Abstract

The aim of the study is the modelling of training responses with a variable dose-response model in a sport discipline that requires highly complex coordination. We propose a method to optimise the training programme plan using the potential maximal performance gain associated with overload and tapering periods. Data from five female elite gymnasts were collected over a 3-month training period. The relationship between training amounts and performance was then assessed with a non-linear model. The optimal magnitude of training load reduction and its duration were investigated with and without an overload period using simulation procedures based on individual responses to training. The correlation between actual and modelled performances was significant (R 2 = 0.81 ± 0.02, P < 0.01). The standard error was 2.7%. Simulations revealed that taper preceded by an overload period allows a higher performance to be achieved compared to an absence of overload period (106.3 ± 0.3% vs. 105.1 ± 0.3%). With respect to the pre-taper load, the model predicts that optimal load reductions during taper were 48.4 ± 0.7% and 42.5 ± 1.0% for overloading and non-overloading strategies, respectively. Moreover, optimal durations of the taper period were 34 ± 0.5 days and 22 ± 0.5 days for overloading and non-overloading strategies, respectively. In conclusion, the study showed that the variable dose-response model describes precisely the training response in gymnasts.  相似文献   

20.
目的:探讨4周常压模拟高住低练训练法对女子赛艇运动员血清睾酮、皮质醇及血睾酮/皮质醇等的影响。方法:系统观察了7名女子赛艇运动员(实验组)进行4周高住低练(2500m)训练前、训练期间第1周、第2周、第4周及训练后第1周和第2周这些指标的变化,并与6名低住低练运动员(对照组)进行比较分析。结果:(1)4周高住低练使女子赛艇运动员血清T水平呈先降后升之势,4周结束后仍低于实验前水平,并且至少持续2周;(2)4周高住低练期间运动员血清皮质醇水平降低,实验结束后2周恢复到实验前水平;(3)4周高住低练期间Hb和RBC的变化与T和T/C的变化并不一致,实验前后比较,前两者总体趋势是升高,而后两者总体趋势是下降。结论:4周高住低练使血清T水平先降后升,血清C水平降低,这可能与低氧刺激导致血液Hb和RBC逐渐升高以及机体合成代谢相对增强有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号