首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the effects of bovine colostrum on peak vertical jump power (VJpeak), peak cycle power (CPpeak), alactic anaerobic work capacity, resistance exercise one-repetition maxima (1-RM) and plasma insulin-like growth factor I (IGF-I) concentrations. Using a randomized, double-blind, placebo-controlled, parallel design, 51 males completed 8 weeks of resistance and plyometric training while consuming 60 g x day(-1) of bovine colostrum (n = 26) or concentrated whey protein powder (n = 25). Peak vertical jump power, peak cycle power, alactic anaerobic work capacity, 1-RM and plasma IGF-I were not different between groups at baseline (P > 0.33). Peak vertical jump power and peak cycle power were still not significantly different between groups by week 4 (VJpeak: bovine colostrum, 7231 +/- 488 W; whey protein, 7214 +/- 530 W; P = 0.99; CPpeak: bovine colostrum, 1272 +/- 202 W; whey protein, 1232 +/- 208 W; P = 0.99). By week 8, however, peak vertical jump power (bovine colostrum, 7370 +/- 503 W; whey powder, 7237 +/- 481 W; 95% confidence intervals, 54 to 170 W; P < 0.01) and peak cycle power (bovine colostrum, 1400 +/- 215 W; whey protein, 1311 +/- 192 W; 95% confidence intervals, 20 to 61 W; P < 0.01) were significantly higher in the bovine colostrum condition. Alactic anaerobic work capacity and 1-RM increased (P < 0.001), but the increases were not different between groups (P > 0.08). Plasma IGF-I did not change in either group (P = 0.55). We conclude that bovine colostrum supplementation during training significantly increased peak anaerobic power, but had no effect on alactic anaerobic work capacity, 1-RM or plasma IGF-I.  相似文献   

2.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

3.
Parkour is a modern physical activity that consists of using the environment, mostly urban, as a playground of obstacles. The aims of this study were (i) to investigate age, anthropometric and training characteristics of Parkour practitioners, called ‘traceurs’ and (ii) to assess jump performances and muscular characteristics of traceurs, compared to those of gymnasts and power athletes. The mean age of the population of traceurs studied (n?=?130) was 19.4?±?4.3 years, women represented 12.4% of the total field and mean training volume was 8.1?±?0.5?hours/week. Vertical and long jump performances were analysed on smaller samples of participants (four groups, n?=?15 per group); and eccentric (?90°?s?1, ?30°?s?1), concentric (30°?s?1, 90°?s?1) and isometric knee extensors torques were evaluated by means of an isokinetic dynamometer. Traceurs showed greater (P?P?P?P?相似文献   

4.
5.
Abstract

Aim of the study was to compare the effects of unilateral eccentric-only training using constant velocity vs. constant external load. Forty-seven participants were randomized in isokinetic (IK), dynamic constant external resistance (DCER) unilateral eccentric training or control groups. Knee extension 1RM and isometric, eccentric and concentric knee extensors peak torque, as well as changes in vastus lateralis fascicle pennation angle, fascicle length, muscle thickness, and quadriceps fat-free mass were measured. Both IK and DCER training consisted in 5?×?8 eccentric-only repetitions, 2d/w, for 6 weeks. IK and DCER training sessions were matched for total volume. After training, both IK and DCER similarly increased 1RM (respectively, +4.4?kg, CI95% 1.8–7.0 and +5.5?kg, CI95% 3.3–7.9), isometric (respectively, +34.5?N/m, CI95% 23.0–45.9 and +15.8, CI95% 5.4–26.2) and concentric peak torque (respectively, +17.0?N/m, CI95% 6.6 to +27.4 and 12.2 CI95% 2.8–21.7). IK increased eccentric peak torque significantly more than DCER (respectively, +84.2?N/m, CI95% 66.3–102.1 and +38.2?N/m, CI95% 21.9–54.4). Both IK and DCER similarly increased fascicle length (respectively, +14.7?mm, CI95% 5.4–24.0 and +14.4?mm, CI95% 5.4–23.3) and muscle thickness (respectively, +3.3?mm, CI95% 1.5–5.1, and +4.1?mm, CI95% 2.5–5.7). Matching the training volume resulted in similar adaptations comparing eccentric-only IK or DCER resistance training. Both in rehabilitation and in training practice, the use of easily available gym devices can be a good substitute for expensive and often unavailable IK devices.  相似文献   

6.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad · s -1 and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5 - 7.1 years (mean - s ). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets 2 10 repetitions at 70% body mass load). Strength was reduced for 4 days ( P ? 0.05) but no significant differences ( P > 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6 - 1.1% vs 95.2 - 1.3% of pre-exercise values, P ? 0.05) and drop jump (95.2 - 1.4%, P ? 0.05) performance. Creatine kinase was elevated ( P ? 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

7.
The purpose of this study was to compare the power expressed during the bench press exercise in resistance-trained men following different pre-activation conditions. Twenty-two trained men (age 24.1?±?1.7 years, height 178.6?±?6.1?cm, body mass 81.1?±?10.6?kg) completed a maximal effort bench press (1-RM) test (100.0?kg?±?8.1?kg). In a subsequent assessment, each participant performed concentric bench press movements with loads of 20%, 30%, 40% and 50% of their 1-RM preceded by either a concentric contraction (CC), a low isometric preload (LIP; 70% 1-RM) or a high isometric preload (HIP; 100% 1-RM) conditions. All movements were performed in a Smith machine with a settable quick-release device. Participants performed all three conditions in randomized fashion. Results indicated that power outputs during the bench press exercise following HIP were significantly (p?<?0.05) greater than CC at 20% 1-RM (+9%), 30% 1-RM (+16%) and 40% 1-RM (+14%), and LIP at 20% 1-RM (+4%), 30% 1-RM (+20%) and 40% 1-RM (+15%). No differences were found between conditions at 50% 1-RM. Area under the force–power curve with HIP was greater (p?<?0.05) than with CC and LIP. In conclusion, results of this study indicate that the use of a HIP (100% 1-RM) in trained participants results in significantly greater power output during the concentric phase of a multi-joint exercise when compared to standard concentric movement.  相似文献   

8.
The acute influence of chain-loaded variable resistance exercise on subsequent free-weight one-repetition maximum (1-RM) back squat performance was examined in 16 recreationally active men. The participants performed either a free-weight resistance (FWR) or chain-loaded resistance (CLR) back squat warm-up at 85% 1-RM on two separate occasions. After a 5-min rest, the participants attempted a free-weight 1-RM back squat; if successful, subsequent 5% load additions were made until participants failed to complete the lift. During the 1-RM trials, 3D knee joint kinematics and knee extensor and flexor electromyograms (EMG) were recorded simultaneously. Significantly greater 1-RM (6.2?±?5.0%; p?p?p?>?.05) was found in concentric EMG, eccentric or concentric knee angular velocity, or peak knee flexion angle. Performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without changes in knee flexion angle or eccentric and concentric knee angular velocities; thus a real 1-RM increase was achieved as the mechanics of the lift were not altered. These results are indicative of a potentiating effect of CLR in a warm-up, which may benefit athletes in tasks where high-level strength is required.  相似文献   

9.
To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.  相似文献   

10.
To investigate the influence of adding a weekly eccentric-overload training (EOT) session in several athletic performance’s tests, 18 team-handball players were assigned either to an EOT (n?=?11) or a Control (n?=?7) group. Both groups continued to perform the same habitual strength training, but the EOT group added one session/week during a 7-week training programme consisting of four sets of eight repetitions for the bilateral half-squat and unilateral lunge exercises. The test battery included handball throwing velocity, maximum dynamic strength (1RM), countermovement jump (CMJ), 20?m sprint, triple hop for distance, and eccentric/concentric power in both the half-squat and lunge exercises. Data were analysed using magnitude-based inferences. Both groups improved their 1RM in the half squat, 20?m sprint time, and CMJ performance to a similar extent, but the EOT group showed a beneficial effect for both right [(42/58/0), possibly positive] and left [(99/1/0), very likely positive] triple hop for distance performance. In addition, the EOT group showed greater power output improvements in both eccentric and concentric phases of the half-squat (difference in percent of change ranging from 6.5% to 22.0%) and lunge exercises (difference in per cent of change ranging from 13.1% to 24.9%). Nevertheless, no group showed changes in handball throwing velocity. Selected variables related to team-handball performance (i.e. functional jumping performance, power output) can be improved by adding a single EOT session per week, highlighting the usefulness of this low-volume/high-intensity training when aiming at optimizing dynamic athletic performance.  相似文献   

11.
ABSTRACT

This study compared the effects of dictating load using individual (ILVP) or group (GLVP) load-velocity profiles on lower-body strength and power. Nineteen trained males (23.6 ± 3.7 years) completed a back squat one-repetition maximum (1-RM), load-velocity profiling (LVP), and countermovement (CMJ), static-squat (SSJ) and standing-broad (SBJ) jump tests before and after 6 weeks of resistance training. Participants were randomly assigned to an ILVP, or GLVP intervention with intra-session load dictated through real-time velocity monitoring and prediction of current relative performance using either the participant’s LVP (ILVP) or a LVP based on all participant data (GLVP). Training resulted in significant increases in back squat 1-RM for the ILVP and GLVP group (p < 0.01; 9.7% and 7.2%, respectively), with no group-by-time interaction identified between training groups (p = 0.06). All jump performance significantly increased for the ILVP group (p < 0.01; CMJ: 6.6%; SSJ: 4.6%; SBJ: 6.7%), with only CMJ and SSJ improving for the GLVP group (p < 0.05; 4.3%). Despite no significant group-by-time interaction across all variables, the ILVP intervention induced a greater magnitude of adaptation when compared to a GLVP approach. Additionally, an individualised approach may lead to greater positive transfer to power-based movements, specifically vertical and horizontal jumps.  相似文献   

12.
Abstract

Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.  相似文献   

13.
Abstract

Physiological responses and performance were examined during and after a simulated trampoline competition (STC). Fifteen elite trampoline gymnasts participated, of which eight completed two routines (EX1 and EX2) and a competition final (EX3). Trampoline-specific activities were quantified by video-analysis. Countermovement jump (CMJ) and 20 maximal trampoline jump (20-MTJ) performances were assessed. Heart rate (HR) and quadriceps muscle temperature (Tm) were recorded and venous blood was drawn. A total of 252 ± 16 jumps were performed during the STC. CMJ performance declined (< 0.05) by 3.8, 5.2 and 4.2% after EX1, EX2 and EX3, respectively, and was 4.8% lower (< 0.05) than baseline 24 h post-competition. 20-MTJ flight time was ~1% shorter (< 0.05) for jump 1–10 after EX2 and 24 h post STC. Tm increased (< 0.05) to ~39°C after the warm-up, but declined (< 0.05) 1.0 and 0.6ºC before EX2 and EX3, respectively. Peak HR was 95–97% HRmax during EX1-3. Peak blood lactate, plasma K+ and NH3 were 6.5 ± 0.5, 6.0 ± 0.2 mmol · l?1 and 92 ± 10 µmol · l?1, respectively. Plasma CK increased (< 0.05) by ~50 and 65% 0 and 24 h after STC. In conclusion, a trampoline gymnastic competition includes a high number of repeated explosive and energy demanding jumps, which impairs jump performance during and 24 h post-competition.  相似文献   

14.
周斌 《体育科研》2017,(4):74-78,84
目的:探讨不同离心负荷激活干预对后激活增强效应所产生的影响及有效作用时间。方法:通过对14名普通男性大学生运用肌肉离心收缩激活方式,观察后续纵跳表现的影响。结果:在激活干预后即刻,对照组与离心负荷(105%1RM和125%1RM)激活干预两个实验组纵跳峰值功率和纵跳的高度没有显著差异,激活干预两个组之间的纵跳表现没有显著差异。激活干预的两组在T3和T6时段的纵跳功率峰值均明显高于对照组。在T3时段两个激活干预实验组纵跳高度峰值明显高于对照组,在T6时段,105%1RM激活干预组的纵跳高度明显增加。结论:纵跳测试前加入大强度的离心负荷刺激会小幅度提高纵跳的能力,不同强度离心负荷的激活干预的后激活增强效应差异性不大,采用105%1RM强度的离心负荷激活干预在 3~6 min有明显的后激活增强效应。  相似文献   

15.
Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.  相似文献   

16.
Abstract

The purpose of this study was to compare the effects of a specific vibration programme with those of combined aerobic and resistance exercise training on bone mineral density (BMD), body composition, and muscular strength in post-menopausal women, over a period of 6 months. Thirty-two healthy, inactive post-menopausal women aged 46–62 years were divided into exercise (n = 10), vibration (n = 13), and control (n = 9) groups. The exercise group participated in a supervised programme of strength training at 70% of one-repetition maximum (1-RM) 2 days a week, and aerobic exercise at 70–85% of maximum heart rate one day a week. The vibration group performed vibration training 3 days a week (9 sets×45–80 s per session, 35–40 Hz, peak-to-peak amplitude of vertical vibration = 1.5 mm) on a vibration platform (NemesTM LCB, Bosco System). The BMD of the lumbar spine (L2–L4) was assessed using dual-energy X-ray absorptiometry, and muscle strength with the 1-RM method at baseline and after 6 months of intervention. The BMD of L2–L4 increased in the exercise group (P < 0.05), remained steady in the vibration group, and decreased in the control group (P < 0.05). Muscular strength of leg-extension and leg-curl exercise improved by 28% and 25.5% (P < 0.01) in the exercise group and by 13% (P < 0.01) and 20.5% (P < 0.001) in the vibration group, respectively. The results indicate that conventional training contributed to the increase in BMD of L2–L4, while the vibration programme helped to maintain BMD in post-menopausal women. Both training programmes were efficient in improving muscle strength.  相似文献   

17.
One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8?±?3.8 years; body mass (BM): 70.2?±?12.2?kg; height: 1.74?±?0.78?m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P?>?.05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P?<?.05) decrease in jump height (CMJ: ?12% to ?17%, DJ: ?10% to ?14%); relative peak power (CMJ: ?8% to ?17%, DJ: ?7% to ?10%); and peak velocity (CMJ: ?4% to ?7%, DJ: ?3% to ?8%); while PJ reactive strength index was significantly reduced (?15% to ?21%) with all WR conditions. Consideration should be given to the inclusion of WR in sports where VJ’s are important components as it may provide a novel movement specific training stimulus.

Highlights

  • WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force.

  • Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3–6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance.

  • Practitioners can safely load their athletes with upper or lower body WR of 3–6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too.

  • As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  相似文献   

18.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

19.
The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad?·?s?1 on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P <?0.05) were found between mean (?± s) peak knee joint power in the two tests (squat vertical jump: 2255?±?434W; isokinetic knee extension: 771?±?81W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.  相似文献   

20.
Abstract

The aim of the present study was to investigate if resistance training (RT), performed with individualized recovery between sessions (RT-IND), promotes greater gains in strength and muscle mass and reduces the variability on adaptations compared to RT with fixed recovery intervals (RT-FIX). Twenty young men (age 21.9?±?3.3 years) were randomized in the RT-IND and RT-FIX groups. Five days before the beginning of the training, measurements of the root mean square of successive R-R intervals differences (RMSSD) values of each individual were performed to establish the baseline values. Before each RT session, the RMSSD values determined whether the participants from RT-IND protocol were recovered from the previous session. Participants performed the RT session only if RMSSD values had returned to the baseline, otherwise they had to wait for an additional 24?h. RT-FIX performed an RT session every 48?h. Muscle strength was measured by one-maximal repetition (1-RM) test and muscle cross-section area (CSA) of the vastus laterals by ultrasonography were assessed pre- and post-training. 1-RM values increased significantly from pre to post-training for both groups (RT-IND: 30% and RT-FIX: 42%, main time effect, P?<?0001), with no significant difference between groups. Muscle CSA increased significantly from pre to post-training (RT-IND: 15.7% and RT-FIX: 15.8%, main time effect, P?<?0001), with no significant difference between groups. In conclusion, RT-IND did not increase the gains in muscle strength and mass neither reduce the variability in muscle adaptations when compared to the RT-FIX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号