首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad · s -1 and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5 - 7.1 years (mean - s ). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets 2 10 repetitions at 70% body mass load). Strength was reduced for 4 days ( P ? 0.05) but no significant differences ( P > 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6 - 1.1% vs 95.2 - 1.3% of pre-exercise values, P ? 0.05) and drop jump (95.2 - 1.4%, P ? 0.05) performance. Creatine kinase was elevated ( P ? 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

2.
Indirect markers of muscle damage and collagen breakdown were recorded for up to 9 days after a bout of concentric, followed by a bout of eccentric, muscle actions. Nine untrained participants performed two bouts of 50 maximum effort repetitions on an isokinetic dynamometer (angular velocity 1.05 rad x s(-1), range of motion 1.75 rad). An initial concentric bout of muscle actions was followed by an eccentric bout 21 days later, using the same knee extensors. Concentric actions induced no changes in maximum voluntary isometric contraction force (MVC), nor induced any changes in the serum enzyme activities of creatine kinase, a lactate dehydrogenase isoenzyme (LDH-1), or alkaline phosphatase. Similarly, concentric actions induced no change in markers of collagen breakdown, namely plasma hydroxyproline and serum type 1 collagen concentration. In contrast, eccentric actions induced a 23.5+/-19.0% (mean+/-s) decrease in MVC immediately post-exercise (P < 0.05), and increased the serum enzyme activities of creatine kinase and LDH-1 to 486+/-792 and 90+/-11 IU.l(-1) respectively on day 3 post-exercise, and to 189+/-159 and 96+/-13 IU x l(-1) respectively on day 7 post-exercise (all P< 0.05). Eccentric actions induced no significant changes in plasma hydroxyproline, but increased collagen concentration on days 1 and 9 post-exercise (48.6% and 44.3% increases above pre-exercise on days 1 and 9 respectively; both P < 0.05). We conclude that eccentric but not concentric actions may result in temporary muscle damage, and that collagen breakdown may also be affected by eccentric actions. With caution, indices of collagen breakdown may be used to identify exercise-induced damage to connective tissue.  相似文献   

3.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

4.
The jump performance of ten youth soccer players (mean age 15.8 years, s= 0.4) was assessed before and after 42 min of soccer-specific exercise performed on a non-motorized treadmill. A squat, countermovement, and drop jump were performed on a force platform and simultaneously surface EMG activity of four lower limb muscles was collected. Jump height deteriorated across all conditions with mean reductions of - 1.4 cm (s = 1.6; P < 0.05), - 3.0 cm (s = 2.9; P < 0.05), and -2.3 cm (s = 1.7; P < 0.01) in the squat, countermovement, and drop jump respectively. The impact force in the drop jump was the only force variable to show a significant change with fatigue (P < 0.05). Following the prolonged exercise, reductions in total muscle activity were non-significant for the squat jump, approached significance for the counter-ovement jump (P = 0.07), and achieved significance for the drop jump (P < 0.05). The results showed that completing soccer-specific exercise reduced performance in all jump tasks. Reductions in muscle activity were greatest for the drop jump, suggesting an influence of muscle stretch and loading on reduced muscle activity when fatigued.  相似文献   

5.
A well-documented observation after eccentric exercise is a reduction in maximal voluntary force. However, little is known about the ability to maintain maximal isometric force or generate and maintain dynamic peak power. These aspects of muscle function were studied in seven participants (5 males, 2 females). Knee extensor isometric strength and rate of fatigue were assessed by a sustained 60 s maximal voluntary contraction at 80 degrees and 40 degrees knee flexion, corresponding to an optimal and a shortened muscle length, respectively. Dynamic peak power and rate of fatigue were assessed during a 30 s Wingate cycle test. Plasma creatine kinase was measured from a fingertip blood sample. These variables were measured before, 1 h after and 1, 2, 3 and 7 days after 100 repetitions of the eccentric phase of the barbell squat exercise (10 sets x 10 reps at 80% concentric one-repetition maximum). Eccentric exercise resulted in elevations in creatine kinase activity above baseline (274+/-109 U x l(-1); mean +/- s(x)) after 1 h (506+/-116 U x l(-1), P < 0.05) and 1 day (808+/-117 U x l(-1), P < 0.05). Isometric strength was reduced (P < 0.05) for 7 days (35% at 1 h, 5% at day 7) and the rate of fatigue was lower (P < 0.05) for 3 days at 80 degrees and for 1 day at 40 degrees. Wingate peak power was reduced to a lesser extent (P < 0.05) than isometric strength at 1 h (13%) and, although the time course of recovery was equal, the two variables differed in their pattern of recovery. Eccentrically exercised muscle was characterized by an inability to generate high force and power, but an improved ability to maintain force and power. Such functional outcomes are consistent with the proposition that type II fibres are selectively recruited or damaged during eccentric exercise.  相似文献   

6.
The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad x s(-1) on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P < 0.05) were found between mean (+/- s) peak knee joint power in the two tests (squat vertical jump: 2255 +/- 434 W; isokinetic knee extension: 771 +/- 81 W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.  相似文献   

7.
Cryotherapy is an effective treatment for acute sports injury to soft tissue, although the effect of cryotherapy on exercise-induced muscle damage is unclear. The aim of this study was to assess the effects of cold water immersion on the symptoms of exercise-induced muscle damage following strenuous eccentric exercise. After performing a bout of damage-inducing eccentric exercise (eight sets of five maximal reciprocal contractions at 0.58 rad x s(-1)) of the elbow flexors on an isokinetic dynamometer, 15 females aged 22.0+/-2.0 years (mean +/- s) were allocated to a control group (no treatment, n = 7) or a cryotherapy group (n = 8). Subjects in the cryotherapy group immersed their exercised arm in cold water (15 degrees C) for 15 min immediately after eccentric exercise and then every 12 h for 15 min for a total of seven sessions. Muscle tenderness, plasma creatine kinase activity, relaxed elbow angle, isometric strength and swelling (upper arm circumference) were measured immediately before and for 3 days after eccentric exercise. Analysis of variance revealed significant (P < 0.05) main effects for time for all variables, with increases in muscle tenderness, creatine kinase activity and upper arm circumference, and decreases in isometric strength and relaxed elbow angle. There were significant interactions (P<0.05) of group x time for relaxed elbow angle and creatine kinase activity. Relaxed elbow angle was greater and creatine kinase activity lower for the cryotherapy group than the controls on days 2 and 3 following the eccentric exercise. We conclude that although cold water immersion may reduce muscle stiffness and the amount of post-exercise damage after strenuous eccentric activity, there appears to be no effect on the perception of tenderness and strength loss, which is characteristic after this form of activity.  相似文献   

8.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

9.
Following a bout of heavy resistance training, the muscle is in both a fatigued and potentiated state with subsequent muscle performance depending on the balance between these two factors. To date, there is no uniform agreement about the optimal acute recovery required between the heavy resistance training and subsequent muscle performance to gain performance benefits. The aim of the present study was to determine the recovery time required to observe enhanced muscle performance following a bout of heavy resistance training. Twenty professional rugby players performed a countermovement jump at baseline and approximately 15 s, 4, 8, 12, 16, 20, and 24 min after a bout of heavy resistance training (three sets of three repetitions at 87% one-repetition maximum squat). Power output, jump height, and peak rate of force development were determined for all countermovement jumps. Despite an initial decrease in countermovement jump performance after the heavy resistance training (P<0.001), participants' performance increased significantly following 8 min recovery (P<0.001) (i.e. jump height increased by 4.9%, s=3.0). The findings suggest that muscle performance during a countermovement jump can be markedly enhanced following bouts of heavy resistance training provided that adequate recovery (approximately 8 min) is allowed between the heavy resistance training and the explosive activity.  相似文献   

10.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad s -1 ) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

11.
Eccentric strength training is thought to be important for improving functional performance. A form of training that may enhance the eccentric training stimulus is the attachment of a rubber bungy to the strength-training apparatus in such a way that the return velocity and, therefore, the force required to decelerate the load at the end of the eccentric phase are increased. To determine the effects of elastic bungy training, we performed two studies. In the first, we examined the electromyographic (EMG) and kinematic characteristics of three different squat techniques: traditional squat, non-bungy jump squat and bungy jump squat. In the second study, we examined whether jump squat training with and without the attachment of a rubber bungy to an isoinertial supine squat machine affects muscle function, multidirectional agility, lunge ability and single leg jump performance. The EMG activity of the vastus lateralis and gastrocnemius muscles was recorded. An instrumented isoinertial supine squat machine was used to measure maximal strength and various force, velocity and power measures in both studies. Participants were randomly assigned to one of three groups: a control group and two weight-trained groups, one of which performed bungy squat jumps and one of which performed non-bungy squat jumps. The two experimental groups performed 10 weeks of ballistic weight training. The kinematic and EMG characteristics of the bungy and non-bungy squat techniques differed significantly from those of the traditional squat on all the variables measured. The only difference between the bungy squat and non-bungy squat training was greater EMG activity during the later stages (70-100%) of the eccentric phase of the bungy squat condition. The 10 weeks of bungy squat and non-bungy squat jump weight training were found to be equally effective in producing improvements in a variety of concentric strength and power measures (10.6-19.8%). These improvements did not transfer to improved performance for the single leg jump and multidirectional agility. However, bungy weight training did lead to a significant improvement in lunge performance (21.5%) compared with the other groups.  相似文献   

12.
Indirect markers of muscle damage and collagen breakdown were recorded for up to 9 days after a bout of concentric, followed by a bout of eccentric, muscle actions. Nine untrained participants performed two bouts of 50 maximum effort repetitions on an isokinetic dynamometer (angular velocity 1.05 rad.s-1, range of motion 1.75 rad). An initial concentric bout of muscle actions was followed by an eccentric bout 21 days later, using the same knee extensors. Concentric actions induced no changes in maximum voluntary isometric contraction force (MVC),nor induced any changes in the serum enzyme activities of creatine kinase, a lactate dehydrogenase isoenzyme (LDH-1), or alkaline phosphatase. Similarly, concentric actions induced no change in markers of collagen breakdown,namely plasma hydroxyproline and serum type 1 collagen concentration.In contrast,eccentric actions induced a 23.5 ± 19.0% (mean ± s) decrease in MVC immediately post-exercise (P< 0.05), and increased the serum enzyme activities of creatine kinase and LDH-1 to 486 ± 792 and 90 ± 11 IU.l-1 respectively on day 3 post-exercise, and to 189 ± 159 and 96 ±13 IU.l-1 respectively on day 7 post-exercise (all P < 0.05). Eccentric actions induced no significant changes in plasma hydroxyproline, but increased collagen concentration on days 1 and 9 post-exercise (48.6% and 44.3% increases above pre-exercise on days 1 and 9 respectively; both P < 0.05). We conclude that eccentric but not concentric actions may result in temporary muscle damage, and that collagen breakdown may also be affected by eccentric actions. With caution, indices of collagen breakdown may be used to identify exercise-induced damage to connective tissue.  相似文献   

13.
ABSTRACT

This study examined potential differences between maximally cushioned (MAX) shoes and standard cushioned (STND) shoes during countermovement vertical jump (CMVJ) performance. Twenty-one males (23[2] y; 86.5[15.4] kg; 179.8[6.3] cm) completed eight jumps each in MAX and STND shoes while three-dimensional kinematic and kinetic data were collected. Paired-samples t-tests (α = 0.05) and Cohen’s d effect sizes (ES) were used to compare the following variables: vertical jump displacement, jump time, hip, knee and ankle joint angles at the start of the countermovement, the end of the unloading phase, the end of the eccentric phase, and at takeoff, peak joint power, and the joint contributions to total lower extremity work during the eccentric and concentric phases. The ankle was more dorsiflexed at the end of the countermovement in the MAX shoe (p = 0.002; ES = 0.55) but greater plantarflexion occurred in the STND shoes at takeoff (p = 0.028; ES = 0.56). No other differences were observed. The result of this study suggests that unique ankle joint angular positioning may be employed when wearing MAX versus STND shoes. Since the unique ankle joint positioning did not alter jump performance, potential MAX footwear users might not need to consider the potential for altered CMVJ performance when determining whether to adopt MAX footwear.  相似文献   

14.
The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad?·?s?1 on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P <?0.05) were found between mean (?± s) peak knee joint power in the two tests (squat vertical jump: 2255?±?434W; isokinetic knee extension: 771?±?81W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.  相似文献   

15.
Abstract

This study aimed to analyse whether increasing the eccentric overload (EO) during resistance training, in terms of range of motion and/or velocity using an electric-motor device, would induce different muscle adaptations than conventional flywheel-EO resistance training. Forty physically active university students (21.7?±?3.4 years) were randomly placed into one of the three training groups (EX1, EX2, FW) and a control group without training (n?=?10 per group). Participants in the training groups completed 12 sessions (4 sets of 7 repetitions) of iso-inertial single-leg squat training over 6 weeks for the dominant leg. Resistance was generated either by an electric-motor device at two different velocities for the eccentric phase; 100% (EX1) or 150% (EX2) of concentric speed, or by a conventional flywheel device (FW). Thigh lean tissue mass, unilateral leg press one-repetition maximum (1-RM), unilateral muscle power at different percentages of the 1-RM and bilateral/unilateral vertical jump were assessed before and after the 6-week training. There were significant (p?<?0.05–0.001) main effects of time in the 3 training groups, indicating increased thigh lean tissue mass (2.5–5.8%), 1-RM load (22.4–30.2%), vertical jump performance (9.1–32.9%) and muscle power (8.8–21.7%), without differences across experimental groups. Participants in the control group did not improve any of the variables measured. In addition, EX2 showed greater gains in eccentric average peak power during training than EX1 and FW (p?<?0.001). Despite the different EO offered, 6 weeks of resistance training using flywheel or electric-motor devices induced similar significant gains in muscle mass, strength, muscle power and vertical jump.  相似文献   

16.
目的:探讨各种轻负荷条件下半蹲起力-时间曲线特征和力增加速率与各种肌肉收缩运动表现的相关性;分析轻负荷抗阻练习与等长、等动及纵跳动作的下肢发力特征间的内在生物力学联系。方法:募集日本筑波大学9名男子运动员,在测力台上进行不同负荷的半蹲起(Half-squat,HS)以获取地面反作用数据(GRF),进而计算出力增加速率(RFD)。进行最大负荷(>1RM)的静力收缩以测得最大力量(Fmax),进行各种纵跳练习(SJ、CMJ、RJ)以测得跳跃能力参数;采用多关节等速测力系统测取不同角速度下的膝伸展峰力矩(Peak torque,PT);采用Pearson相关系数反映不同负荷半蹲起RFD值与最大力量、跳跃能力和等速膝伸展峰力矩间的相关关系。结果:1)轻负荷半蹲起动作的平均发力时间在0.2 s以内,RFD值在0~60 ms区间内相近或相等;2)20 kg、40 kg和60 kg半蹲起RFD值与Fmax之间无相关关系(P>0.05),60 kg半蹲起RFD值与300°/s条件下的膝伸展PT存在显著性正相关(P<0.01);3)CMJ-JH和RJ-JH显著高于SJ-JH(P<0.01),而RJ的RFD值显著大于SJ和CMJ(P<0.01);4)40 kg半蹲起RFD值与SJ-JH、CMJ-JH之间存在显著性正相关(P<0.05);5)RFD与Fpeak和T-Fpeak之间分别存在显著性正相关和负相关(P<0.05),但Fpeak和T-Fpeak之间未存在相关关系(P>0.05)。结论:轻负荷半蹲起可以作为短跑、游泳等项目运动员起动力量训练手段,以减少起跑和起跳入水的反应时,强化起点技术;在20~60 kg负荷范围内,RFD值在短时间内保持相对恒定;轻负荷半蹲起在保持高输出功率的同时,具有更加高速的发力特征,可作为提高优秀运动员纵跳能力的有效练习手段。  相似文献   

17.
Abstract

The aim of the study was to determine if topical Arnica is effective in reducing pain, indicators of inflammation and muscle damage, and in turn improve performance in well-trained males experiencing delayed onset muscle soreness (DOMS). Twenty well-trained males matched by maximal oxygen uptake (V?O2 Max) completed a double-blind, randomised placebo-controlled trial. Topical Arnica was applied to the skin superficial to the quadriceps and gastrocnemius muscles immediately after a downhill running protocol designed to induce DOMS. Topical Arnica was reapplied every 4 waking hours for the duration of the study. Performance measures (peak torque, countermovement and squat jump), pain assessments (visual analogue scale (VAS) and muscle tenderness) and blood analysis (interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, myoglobin and creatine kinase) were assessed at seven time points over five days (pre-, post-, 4, 24, 48, 72 and 96 hours after the downhill run). Participants in the topical Arnica group reported less pain as assessed through muscle tenderness and VAS 72 hours post-exercise. The application of topical Arnica did not affect any performance assessments or markers of muscle damage or inflammation. Topical Arnica used immediately after intense eccentric exercise and for the following 96 hours did not have an effect on performance or blood markers. It did however demonstrate the possibility of providing pain relief three days post-eccentric exercise.  相似文献   

18.
The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners (VO2(peak) 60.1 +/- 7.3 ml x kg(-1) x min(-1)) performed 10 min of treadmill running at 70% VO2(peak) before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 +/- 0.6 cm; isometric strength, -5.6% +/- 3.4%; countermovement jump height -5.5% +/- 3.4%; all P < 0.05). The results suggest that prolonged SS does not influence running economy despite changes in neuromuscular function.  相似文献   

19.
BackgroundFemales are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions.MethodsWe investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18–30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively.ResultsMales were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males.ConclusionThis increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.  相似文献   

20.
Purpose: Resistance training is often performed in a traditional training style using deliberate relatively longer repetition durations or in an explosive training style using maximal intended velocities and relatively shorter repetition durations. Both improve strength, “power” (impulsivity), and speed. This study compared explosive and traditional training over a 6-week intervention in 30 healthy young adult male recreational soccer players. Method: Full body supervised resistance training was performed 2 times a week using 3 sets of each exercise at 80% of one repetition maximum to momentary failure. Outcomes were Smith machine squat 1 repetition maximum, 10 meter sprint time, and countermovement jump. Results: Both groups significantly improved all outcomes based on 95% confidence intervals not crossing zero. There were no between-group differences for squat 1 RM (TRAD = 6.3[5.1 to 7.6] kg, EXP = 5.2[3.9 to 6.4] kg) or 10 meter sprint (TRAD = ?0.05[?0.07 to ?0.04] s, EXP = ?0.05[?0.06 to ?0.03] s). Explosive group had a significantly greater increase in countermovement jump compared to the traditional group (TRAD = 0.7[0.3 to 1.1] cm, EXP = 1.3[0.9 to 1.7] cm). Conclusion: Both the traditional training and explosive training performed to momentary failure produced significant improvements in strength, speed, and jump performance. Strength gains are similar independent of intended movement speed. However, speed and jump performance changes are marginal with resistance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号