首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This paper introduces an efficient direct approach for solving delay fractional optimal control problems. The concepts of the fractional integral and the fractional derivative are considered in the Riemann–Liouville sense and the Caputo sense, respectively. The suggested framework is based on a hybrid of block-pulse functions and orthonormal Taylor polynomials. The convergence of the proposed hybrid functions with respect to the L2-norm is demonstrated. The operational matrix of fractional integration associated with the hybrid functions is constructed by using the Laplace transform method. The problem under consideration is transformed into a mathematical programming one. The method of Lagrange multipliers is then implemented for solving the resulting optimization problem. The performance and computational efficiency of the developed numerical scheme are assessed through various types of delay fractional optimal control problems. Our numerical findings are compared with either exact solutions or the existing results in the literature.  相似文献   

2.
This paper considers a class of optimal control problems governed by Markov jump systems. Our focus is to develop a computational method, based on the control parametrization approach, for solving this class of optimal control problems. Due to the existence of the continuous-time Markov chain, the optimal control problem under consideration is a stochastic optimal control problem, and hence the control parametrization technique cannot be applied directly. For this, a derandomization approach is introduced to obtain a representative deterministic optimal control problem. Then, the control parametrization method is applied to obtain an approximate finite dimensional optimization problem which can be computed numerically using the gradient-based optimization method. For this, the gradient formulas of the cost function and the constraint functions with respect to control variables are derived. Finally, a practical application involving a RLC circuit model is solved using the method proposed.  相似文献   

3.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

4.
Bellman's dynamic programming equation for the optimal index and control law for stochastic control problems is a parabolic or elliptic partial differential equation frequently defined in an unbounded domain. Existing methods of solution require bounded domain approximations, the application of singular perturbation techniques or Monte Carlo simulation procedures.In this paper, using the fact that Poisson impulse noise tends to a Gaussian process under certain limiting conditions, a method which achieves an arbitrarily good approximate solution to the stochastic control problem is given. The method uses the two iterative techniques of successive approximation and quasi-linearization and is inherently more efficient than existing methods of solution.  相似文献   

5.
A recent communication has proposed a conjectural procedure for representing a category of optimal control problems in bond graph language [W. Marquis-Favre, B. Chereji, D. Thomasset, S. Scavarda, Bond graph representation of an optimal control problem: the dc motor example, in: ICBGM’05 International Conference of Bond Graph Modelling and Simulation, New Orleans, USA, January 23-27, 2005, pp. 239-244]. This paper aims at providing a fundamental theory for proving the effectiveness of this procedure. The class of problem that the procedure can deal with has been extended. Its application was formerly restricted to linear time invariant siso system. The systems considered now are linear time invariant mimo systems. The optimization objective is the minimization of dissipation and input. The developments concerning the optimal control problem are based on the Pontryagin maximum principle and the proof of the effectiveness of the procedure makes a broad use of the port-Hamiltonian concept. As a result, the bond graph representation of the given optimization problem enables the analytical system, which provides the optimal solution, to be derived. The work presented in this paper is the first step in research with perspectives towards formulating dynamic optimization problems in bond graph and, towards coupling this formulation with a sizing methodology using bond graph language and a state-space inverse model approach. This sizing methodology, however, is not the topic of this paper and thus is not presented here.  相似文献   

6.
In this paper, a new direct method based on the Chebyshev cardinal functions is proposed to solve a class of variable-order fractional optimal control problems (V-OFOCPs). To this end, a new operational matrix (OM) of variable-order (V-O) fractional derivative in the Caputo sense is derived for these basis functions and is used to obtain an approximate solution for the problem under study. In the proposed method, the state and the control variables are expanded in terms of the Chebyshev cardinal functions with unknown coefficients, at first. Then, the OM of V-O fractional derivative and some properties of the Chebyshev cardinal functions are employed to achieve a nonlinear algebraic equation corresponding to the performance index and a nonlinear system of algebraic equations corresponding to the dynamical system in terms of the unknown coefficients. Finally, the method of constrained extremum is applied, which consists of adjoining the constraint equations derived from the given dynamical system and the initial conditions to the performance index by a set of undetermined Lagrange multipliers. As a result, the necessary conditions of optimality are derived as a system of algebraic equations in the unknown coefficients of the state variable, control variable, and Lagrange multipliers. Furthermore, some numerical examples of different types are demonstrated with their approximate solutions for confirming the high accuracy and applicability of the proposed method.  相似文献   

7.
Techniques developed in the Sturm—Liouville problem and its Inverse problem are well known in solving the analysis and synthesis problems of non-uniform distributed networks (or NUDN) (1)-(6), (15). However, very few practical results have been obtained from the theory, especially as regards the synthesis part of the problem. In this paper, we show that the chain matrix of an inhomogeneous ladder network (or IHLN) of N sections has undergone exactly the limit process of first-order difference equation approximation of the corresponding differential equation converges to the chain matrix of the corresponding NUDN uniformly on every compact subset of p = z(s)y(s) plane. Therefore an optimal NUDN is proven to be either symmetrical or antimetrical (7). Specifically, a class of optimal NUDN which is optimal on every subinterval of [O,L] has closed-form solutions, and is proven to be both symmetrical and antimetrical.  相似文献   

8.
Basic properties of a new class of strictly positive real (SPR) functions are stated. Four problems are studied. The first deals with SPR preservation of transfer functions, obtained under the composition of polynomials with SPR0 functions. The second deals with Hurwitz stability preservation of the numerator of transfer functions, obtained under the composition of polynomials with SPR0 functions. The third deals with making a Hurwitz closed-loop plant, an SPR0 function by substituting s by SPR0 functions. The four deals with the synthesis of simultaneous SPR feedback plants. For the new class of SPR0 functions, a characterization is presented. For the first and second problems, sufficient conditions are presented using the new class of SPR0 functions. For the third and four problems, two examples are presented, the first being for simultaneous SPR closed-loop systems via constant controllers. The second is for simultaneous stabilization via universal feedback adaptive control.  相似文献   

9.
In this paper, the boundary stabilization problem of a class of unstable reaction–advection–diffusion (RAD) systems described by a scalar parabolic partial differential equation (PDE) is considered. Different the previous research, we present a new gradient-based optimization framework for designing the optimal feedback kernel for stabilizing the unstable PDE system. Our new method does not require solving non-standard Riccati-type or Klein–Gorden-type PDEs. Instead, the feedback kernel is parameterized as a second-order polynomial whose coefficients are decision variables to be tuned via gradient-based dynamic optimization, where the gradients of the system cost functional (which penalizes both kernel and output magnitude) with respect to the decision parameters are computed by solving a so-called “costate” PDE in standard form. Special constraints are imposed on the kernel coefficients to ensure that the optimized kernel yields closed-loop stability. Finally, three numerical examples are illustrated to verify the effectiveness of the proposed approach.  相似文献   

10.
A distributed linear-quadratic-regulator (LQR) semistability theory for discrete-time systems is developed for designing optimal semistable controllers for discrete-time coupled systems. Unlike the standard LQR control problem, a unique feature of the proposed optimal control problem is that the closed-loop generalized discrete-time semistable Lyapunov equation can admit multiple solutions. Necessary and sufficient conditions for the existence of solutions to the generalized discrete-time semistable Lyapunov equation are derived and an optimization-based design framework for distributed optimal controllers is presented.  相似文献   

11.
This paper develops a new dual ML-ADHDP method to solve the optimal consensus problem (OCP) of a class of heterogeneous discrete-time nonlinear multi-agent systems (MASs) with unknown dynamics and time delay. A hierarchical and distributed control strategy is used to transform the original problem into nonlinear model reference adaptive control (MRAC) problems and an OCP of virtual linear MASs. For the nonlinear MRAC problems, a new multi-layer action-dependent heuristic dynamic programming (ML-ADHDP) method is developed to overcome the unknown dynamics and neural network estimation errors, which has higher control accuracy. In order to solve the OCP of virtual linear MASs and improve the convergence speed, a new multi-layer performance index is proposed. Then the ML-ADHDP method is used to solve the coupled Hamiltonian–Jacobi–Bellman equation and obtain the optimal virtual control. Theoretical analysis proves that the original MASs can achieve Nash equilibrium, and simulation results show that the developed dual ML-ADHDP method ensures better convergence speed and higher control accuracy of original MASs.  相似文献   

12.
The main goal of this study is to develop an efficient matrix approach for a new class of nonlinear 2D optimal control problems (OCPs) affected by variable-order fractional dynamical systems. The offered approach is established upon the shifted Chebyshev polynomials (SCPs) and their operational matrices. Through the way, a new operational matrix (OM) of variable-order fractional derivative is derived for the mentioned polynomials.The necessary optimality conditions are reduced to algebraic systems of equations by using the SCPs expansions of the state and control variables, and applying the method of constrained extrema. More precisely, the state and control variables are expanded in components of the SCPs with undetermined coefficients. Then these expansions are substituted in the cost functional and the 2D Gauss-Legendre quadrature rule is utilized to compute the double integral and consequently achieve a nonlinear algebraic equation.After that, the generated OM is employed to extract some algebraic equations from the approximated fractional dynamical system. Finally, the procedure of the constrained extremum is used by coupling the algebraic constraints yielded from the dynamical system and the initial and boundary conditions with the algebraic equation extracted from the cost functional by a set of unknown Lagrange multipliers. The method is established for three various types of boundary conditions.The precision of the proposed approach is examined through various types of test examples.Numerical simulations confirm the suggested approach is very accurate to provide satisfactory results.  相似文献   

13.
This paper concerns the indefinite linear quadratic (LQ) optimal control problem for discrete-time singular Markov jump systems (MJSs) with finite and infinite horizon, where the weight matrices for state and control of cost function are all indefinite. Firstly, the indefinite LQ problem for singular MJSs is equivalently transformed into indefinite LQ problem for MJSs under a series of equivalent transformations. Then, the sufficient and necessary condition is proposed for the solvability of finite horizon case, the optimal control and optimal cost value are given, and the resulting optimal closed-loop system is regular, casual. Next, some sufficient and necessary conditions are obtained to ensure the transformed equivalent LQ problem for MJSs to be definite one, which can guarantee the generalized algebraic Riccati equation with Markov jump has a unique semi-positive definite solution. Meanwhile, the optimal control and nonnegative optimal cost value in infinite horizon are acquired, and the resulting optimal closed-loop system is stochastically admissible. Finally, three examples are presented to illustrate the theoretical results.  相似文献   

14.
A formulation and solution scheme of free final time fractional optimal control problems is presented in this paper. The dynamic constraint is described by a fractional differential equation. Performance index considered is a function of both the state and control variables. The necessary conditions of optimality and the transversality condition are obtained using Lagrange multiplier technique. A numerical technique similar to Shooting method is used for solving the optimal conditions. Numerical example is provided to show the effectiveness of the formulation and numerical solution scheme. It is interesting to note that the final time changes with the interchange of the boundary conditions, which does not occur in classical optimal control problems.  相似文献   

15.
16.
This paper deals with the problem of delay-dependent dissipative control for a class of linear time-delay systems. We develop the design methods of dissipative static state feedback and dynamic output feedback controllers such that the closed-loop system is quadratically stable and strictly (Q,S,R)-dissipative. Sufficient conditions for the existence of the quadratic dissipative controllers are obtained by using linear matrix inequality (LMI) approach. Furthermore, a procedure of constructing such controllers from the solutions of LMIs is given. It is shown that the solvability of a dissipative controller design problem is implied by the feasibility of LMIs. The main results of this paper unify the existing results on H control and passive control.  相似文献   

17.
This paper concentrates on the output tracking control problem with L1-gain performance of positive switched systems. We adopt the multiple co-positive Lyapunov functions technique and conduct the dual design of the controller and the switching signal. Through introducing a new state variable, which is not the output error, the output tracking control problem of the original system is transformed into the stabilization problem of the dynamics system of this new state. The proposed approach is still effective even the output tracking control problem of any subsystem is unsolvable. According to the state being available or not, we establish the solvability conditions of the output tracking control problem for positive switched systems, respectively. In the end, a number example demonstrates the validity of the presented results.  相似文献   

18.
An adaptive dynamic programming controller based on backstepping method is designed for the optimal tracking control of hypersonic flight vehicles. The control input is divided into two parts namely stable control and optimal control. First, the back-stepping method is exploited via neural networks (NNs) to estimate unknown functions. Then, the computational load is reduced by the minimal-learning-parameter (MLP) scheme. To avoid the problem of “explosion of terms”, a first-order filter is adopted. Next, the optimal controller is designed based on the adaptive dynamic programming. In order to solve the Hamiltonian equation, NNs estimators are introduced to approximate performance indicators, achieving the approximate optimal control of hypersonic flight vehicles. Finally, the effectiveness and advantages of the control method are verified by simulation results.  相似文献   

19.
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov–Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号