首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The H control problem is investigated in this paper for a class of networked control systems (NCS) with time-varying delay and packet disordering. A new model is proposed to describe the packet disordering phenomenon and then converted into a parameter-uncertain system with multi-step delay. Based on the obtained system model, a sufficient condition for robust stability of the NCS is derived. Furthermore, an optimization problem with linear matrix inequalities (LMIs) constraints is formulated to design the state feedback H controller such that the closed-loop NCS is robust stable and has an optimal H disturbance attenuation level. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

2.
In this paper two robust controllers for a multivariable vertical short take-off and landing (VSTOL) aircraft system are designed and compared. The aim of these controllers is to achieve robust stability margins and good performance in step response of the system. LQG/LTR method is a systematic design approach based on shaping and recovering open-loop singular values while mixed-sensitivity H method is established by defining appropriate weighting functions to achieve good performance and robustness. Comparison of the two controllers show that LQG method requires rate feedback to increase damping of closed-loop system, while H controller by only proper choose the weighting functions, meets the same performance for step response. Output robustness of both controllers is good but H controller has poor input stability margin. The net controller order of H is higher than the LQG/LTR method and the control effort of them is in the acceptable range.  相似文献   

3.
This paper is concerned with finite-time HH control problem for a class of switched linear systems by using a mode-dependent average dwell time (MDADT) method. The switching signal used in this paper is more general than the average dwell time (ADT), in which each mode has its own ADT. By combining the MDADT and Multiple Lyapunov Functions (MLFs) technologies, some sufficient conditions, which can guarantee that the corresponding closed-loop system is finite-time bounded with a prescribed HH performance, are derived for the switched systems. Moreover, a set of mode-dependent dynamic state feedback controllers are designed. Finally, two examples are given to verify the validity of the proposed approaches.  相似文献   

4.
This paper investigates the H guaranteed cost control problem for mode-dependent time-delay jump systems with norm-bounded uncertain parameters. Both distributed delays and input delays appear in the system model. Based on a matrix inequality, a sufficient condition for the existence of robust H guaranteed cost controller is derived, which stabilizes the considered system and guarantees that both the H performance level and a cost function have upper bounds for all admissible uncertainties. By the cone complementary linearization approach, the desired state-feedback controller can be constructed. A numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

5.
This paper investigates the robust HH dynamic output feedback control problem for networked control systems (NCSs) with quantized measurements. The measurement losses of the communicated information are considered in an unreliable communication channel. The robust HH dynamic output feedback controllers are designed to handle the measurement losses and mitigate the quantization effects such that the resultant closed-loop NCS is mean-square stochastically stable with a prescribed HH disturbance attenuation performance. The controller existence conditions can be derived in terms of linear matrix inequalities (LMIs). Finally, an example is provided to illustrate the effectiveness of the proposed approach.  相似文献   

6.
This paper is concerned with the robust non-fragile filtering for a class of networked systems with distributed variable delays. We model such a complex delay system with an augmented switched system. For the filtering implementation uncertainty, a stochastic variable is employed to indicate random occurrence of the filter gain change, and a norm bound to measure the change size. The suitably weighted measurements are proposed for filter performance improvement, instead of direct use of the measurements themselves which may have significant delays and degrade the performance. With some improved stability and l2 gain analysis for the switched systems, a new sufficient condition is obtained such that the filtering error system is exponentially stable in the mean square sense and achieves a prescribed HH performance level. A numerical example is given to show the effectiveness of the proposed design.  相似文献   

7.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

8.
《Journal of The Franklin Institute》2019,356(17):10296-10314
This paper investigates the problem of distributed event-triggered sliding mode control (SMC) for switched systems with limited communication capacity. Moreover, the system output and switching signals are both considered to be sampled by distributed digital sensors, which may cause control delay and asynchronous switching. First of all, a novel distributed event-triggering scheme for switched systems is proposed to reduce bandwidth requirements. Then, a state observer is designed to estimate the system state via sampled system output with transmission delay. Based on the observed system state, a switched SMC law and corresponding switching law are designed to guarantee the exponential stability of the closed-loop system with H performance. Finally, an application example is given to illustrate the effectiveness of the proposed method.  相似文献   

9.
This paper is concerned with the HH output-feedback control problem for a class of discrete-time systems with randomly occurring nonlinearities (RONs) as well as randomly occurring distributed delays (RODDs). Both RONs and RODDs are governed by random variables obeying the Bernoulli distributions. The measurement output is subject to the sensor saturations described by sector-nonlinearities as well as the channel fadings caused typically in wireless communication. The aim of the addressed problem is to design a full-order dynamic output-feedback controller such that, in the simultaneous presence of RONs, RODDs, sensor saturations and channel fadings, the closed-loop system is exponentially mean-square stable and satisfies the prescribed HH performance constraint. By using a combination of the stochastic analysis and Lyapunov functional approaches, sufficient conditions are derived for the existence of the desired controllers and then the characterization of such controllers is given via the semi-definite programme method. Finally, the numerical simulation result is exploited to illustrate the usefulness and effectiveness of the proposed design technique.  相似文献   

10.
Finite-time stability concerns the boundness of system during a fixed finite-time interval. For switched systems, finite-time stability property can be affected significantly by switching behavior; however, it was neglected by most previous research. In this paper, the problems of finite-time stability analysis and stabilization for switched nonlinear discrete-time systems are addressed. First, sufficient conditions are given to ensure a class of switched nonlinear discrete-time system subjected to norm bounded disturbance finite-time bounded under arbitrary switching, and then the results are extended to H finite-time boundness of switched nonlinear discrete-time systems. Finally based on the results on finite-time boundness, the state feedback controller is designed to H finite-time stabilize a switched nonlinear discrete-time system. A numerical design example is given to illustrate the proposed results within this paper.  相似文献   

11.
12.
This paper addresses the problem of robust H control for uncertain continuous time singular systems with state delays. A new singular-type complete quadratic Lyapunov-Krasovskii functional (LKF) is introduced, which combines with the discretization LKF method to synthesis problems. An improved bounded real lemma (BRL) is presented to ensure the system to be regular, impulse free and stable with H performance condition. Based on the BRL, a memoryless state feedback controller is designed via linear matrix inequalities (LMIs), which greatly reduces the disturbance attenuation level. Numerical examples are given to illustrate improvements over some existing results.  相似文献   

13.
This paper deals with the problems of robust delay-dependent stability and H analysis for Markovian jump linear systems with norm-bounded parameter uncertainties and time-varying delays. In terms of linear matrix inequalities, an improved delay-range-dependent stability condition for Markovian jump systems is proposed by constructing a novel Lyapunov-Krasovskii functional with the idea of partitioning the time delay, and a sufficient condition is derived from the H performance. Numerical examples are provided to demonstrate efficiency and reduced conservatism of the results in this paper.  相似文献   

14.
This paper is concerned with the distributed H filtering problem for a class of sensor networks with stochastic sampling. System measurements are collected through a sensor network stochastically and the phenomena such as random measurement missing and quantization are also considered. Firstly, the stochastic sampling process of the sensor network is modeled as a discrete-time Markovian system. Then, the logarithmic quantization effect is transformed into the parameter uncertainty of the filtering system, and a set of binary variables is introduced to model the random measurement missing phenomenon. Finally, the resulting augmented system is modeled as an uncertain Markovian system with multiple random variables. Based on the Lyapunov stability theory and the stochastic system analysis method, a sufficient condition is obtained such that the augmented system is stochastically stable and achieves an average H performance level γ; the design procedure of the optimal distributed filter is also provided. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

15.
This paper presents the central finite-dimensional H filter for nonlinear polynomial systems with multiplicative noise, that is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the paper reduces the original H filtering problem to the corresponding optimal H2 filtering problem, using the technique proposed in [1]. The paper presents the central suboptimal H filter for the general case of nonlinear polynomial systems with multiplicative noise, based on the optimal H2 filter given in [31]. The central suboptimal H filter is also derived in a closed finite-dimensional form for third (and less) degree polynomial system states. Numerical simulations are conducted to verify performance of the designed central suboptimal filter for nonlinear polynomial systems against the central suboptimal H filters available for polynomial systems with state-independent noise and the corresponding linearized system.  相似文献   

16.
In this paper, the problem of robust H filtering for uncertain systems with time-varying distributed delays is considered. The uncertainties under discussion are time varying but norm bounded. Based on the Lyapunov stability theory, sufficient condition for the existence of full order H filters is proposed by linear matrix inequality (LMI) approach such that the filtering error system is asymptotically sable and satisfies a prescribed attenuation level of noise. A numerical example is given to demonstrate the availability of the proposed method.  相似文献   

17.
This paper is concerned with the decentralized event-triggered H control for switched systems subject to network communication delay and exogenous disturbance. Depending on different physical properties, the system state is divided into multiple communication channels and decentralized sensors are employed to collect signals on these channels. Furthermore, decentralized event-triggering mechanisms (DETMs) with a switching structure are proposed to determine whether the sampled data needs to be transmitted. In particular, an improved data buffer is presented which can guarantee more timely utilization of the sampled data. Then, with the proposed DETMs and data buffer, a time-delay closed-loop switched system is developed. After that, sufficient conditions are presented to guarantee the H performance of the closed-loop switched system by utilizing the average dwell time and piecewise Lyapunov functional method. Since the event-triggered instants and the switching instants may stagger with each other, the influence of their coupling on the H performance analysis is systematically discussed. Subsequently, sufficient conditions for designing the event-triggered state feedback controller gains are provided. Finally, numerical simulations are given to verify the effectiveness of the proposed method.  相似文献   

18.
In this paper, the problem of delay-dependent non-fragile robust H∞H control for a class of discrete-time singular systems with state-delay and parameter uncertainties is investigated. Based on singular value decomposition approach, a delay-dependent sufficient condition for the H∞H control problem for a class of discrete-time singular systems is proposed by constructing generalized Lyapunov–Krasovskii function and a new difference inequality. A memoryless state feedback controller under controller gain perturbations is designed, which guarantees that, for all admissible uncertainties, the resultant closed-loop system is regular, causal, and stable with an H∞H norm bound constraint. Numerical examples in the last will show that our results have the better performance in conservativeness than some results reported in the literature.  相似文献   

19.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

20.
In this paper, the problem of H filtering for neutral systems with mixed time-varying delays and nonlinear perturbations is investigated. Some new delay-dependent sufficient conditions are presented to ensure that the filtering error system is asymptotically stable with a prescribed level of H noise attenuation. In addition, the design procedures for the existence of such filter are presented in terms of a set of linear matrix inequalities (LMIs). Slack variables and convex combination technique are adopted to reduce the conservatism of obtained results. Finally, three numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号