首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

2.
In this paper we investigate the cooperative tracking control problem with quantized time delay information exchange for a group of wheeled mobile robots networked through a connected graph modeling the underlying communication topology. A cooperative controller is proposed using a combination of backstepping technique, graph theory and neural network radial basis functions. We show, using the small gain theorem, that the states of each mobile robot in the group converge to and remain inside a tube centered around its assigned trajectory to form a desired geometric pattern whose centroid is assumed to move along a predefined trajectory. Experimental results on a group of three mobile robots forming a triangular shape are presented to demonstrate the good performance of the proposed cooperative controller.  相似文献   

3.
For a class of stochastic strict-feedback nonlinear systems subject to different time delay states, this paper mainly concerns the problem of global asymptotic stabilization. Two new control strategies that the memoryless parameter-dependent state feedback control and the memoryless parameter-dependent output feedback control are taken into consideration, respectively. By skillfully constructing the Lyapunov-Krasovskii (L-K) functional, taking the proper determined parameter and employing the stochastic nonlinear time delay system (SNTDS) stability theory, the global asymptotic stability of the stochastic closed-loop system can be achieved. The proposed output feedback control scheme is finally utilized for the control design of the one-link manipulator system and two-stage chemical reactor system, which can verify the availability of the control approach.  相似文献   

4.
This paper addresses the cooperative output feedback control of a mobile dual flexible manipulator, which is mounted at a moving platform to grasp and move a rigid object. We derive the distributed parameter model with geometric constraints for the dual flexible manipulator system by utilizing the Lagrange multiplier method and the Hamilton’s principle, which avoids the problem of control spillover. This paper considers a case where the states of system are difficult to measure directly and exploits the high gain observer theory to design the state observers for estimating the unavailable states. Then the cooperative output feedback control scheme is developed by the Lyapunov’s method, which enables the cooperative control of the flexible manipulator system. Furthermore, under the cooperative output feedback control scheme, we prove that the states of the system are uniformly bounded. Finally, the feasibility of the designed cooperative output feedback controllers is verified by numerical simulation.  相似文献   

5.
The problem of modeling and stabilization of a wireless network control system (NCS) is considered in this paper, where packet loss and time delay exist simultaneously in the wireless network. A discrete-time switched system with time-varying delay model is first proposed to describe the system closed by a static state feedback controller. A sufficient criteria for the discrete-time switched system with time-varying delay to be stable is proposed, based on which, the corresponding state feedback controller is obtained by solving a set of linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed method.  相似文献   

6.
In this paper, we deal with the cooperative output regulation problem of linear multi-agent systems on a directed network topology subject to both stochastic packet dropout and time-varying communication delay. On the basis of introducing a queuing mechanism, a distributed state feedback control algorithm is proposed. Then the continuous-time multi-agent systems with piece-wise constant control are converted into discrete-time systems. Under some standard assumptions, the necessary and sufficient conditions under which the tracking errors of followers approach to the origin asymptotically are proposed for different exosystems. Finally, the proposed results are verified via two examples.  相似文献   

7.
This paper is concerned with event-triggered cooperative control of a platoon of connected vehicles via vehicular ad hoc networks (VANETs). To reduce communications among vehicles, we introduce a hybrid event-triggered transmission mechanism based on both time elapsed and state error. The effect of time-varying transmission delay and communication energy constraint can be also taken into account in the system modeling and design procedures. The on-board sensors use different power levels to transmit information resulting in different packet loss rates. The vehicular platoon system is proved to be exponentially mean-square stable under the hybrid event-triggering scheme and a constant time headway spacing policy. A framework for co-design of the hybrid event triggering scheme and the output feedback controller is given to guarantee platoon stability and spacing-error convergence along the stream. Numerical simulations are given to demonstrate the effectiveness of proposed method.  相似文献   

8.
In this paper, the problem of hybrid control strategy (HCS) for time-varying delay positive switched linear systems (PSLS) with unstable modes is studied. Firstly, the HCS, which includes minimum switching strategy and discretized state feedback controller, is applied to PSLS with time-varying delay for the first time. Secondly, by using the discretized multiple linear copositive Lyapunov-Krasovskii functional, a sufficient condition of globally uniformly asymptotically stable (GUAS) under the HCS is given. Finally, the HCS is extended to discrete-time positive switched time delay systems, and a delay independent stabilization condition is obtained in the discrete system. The effectiveness of the HCS is verified by two simulation examples.  相似文献   

9.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

10.
Hyper-exponential stability analysis and hyper-exponential stabilization of linear systems by bounded linear time-varying feedback are investigated in this paper. On the one hand, we propose some Lyapunov-like hyper-exponential stability theorems (both global and local) based on the comparison principle and the concepts of hyper-exponentially stable functions and hyper-exponentially increasing functions. On the other hand, we establish methods to design bounded linear time-varying controllers such that hyper-exponential stability of linear time-invariant systems can be guaranteed. The key design tool is the utilization of a time-varying parameter contained in the controller and the properties of solution to a parametric Lyapunov equation. Both state feedback and observer-based output feedback are accommodated. As a further result, hyper-exponential semi-global stabilization for linear systems by bounded controls is discussed. Finally, the validity of the proposed schemes is illustrated through numerical simulations on spacecraft rendezvous control system.  相似文献   

11.
The comprehensive effect of external disturbance, measurement delay, unmeasurable states and input saturation makes the difficulties and challenges for a HAGC system. In this paper, an adaptive fuzzy output feedback control scheme is designed for a HAGC system under the simultaneous consideration of those factors. At the first place, by state transformation technique, the dynamic model of a HAGC system is simply expressed as a strict feedback form, where measurement delay is converted into input delay. Then, an auxiliary system is employed to compensate for the effect of input delay. Furthermore, an asymmetric barrier Lyapunov function (BLF) is constructed to ensure the output error constraint requirement of thickness error and the fuzzy observer is established to solve unmeasurable states, unknown nonlinear functions at the same time. With the aid of backstepping method, adaptive fuzzy controller is developed to assure that the closed-loop system is semi-globally boundedness and the output error of thickness error doesn’t violate its constraint. At the end, compared simulations are carried out to verify the efficiency of the proposed control scheme.  相似文献   

12.
This paper discusses the problems of delay-dependent stability and stabilization of neutral saturating actuator systems with constant or time-varying delays. The problems of stabilization for neutral saturating actuator system with time-varying delay and parameter from the presented results, the condition obtained here does not need derivative information of the delay time and thus can be used to analyze the stabilization problem for a class of saturating actuator systems with time-varying delay, which is bounded but arbitrarily fast time-varying. Using the model transformation and quasi-convex optimization problem, we derive delay-dependent conditions for the stability of systems in terms of the linear matrix inequality. The stabilization conditions are formulated as linear matrix inequalities (LMIs) which can be solved by convex optimization algorithm. Moreover, the stability criteria are extended to design a stabilizing state feedback controller. Numerical examples show that the results obtained in this paper significantly improve the estimate of stability limit over some existing results reported previously in the literature.  相似文献   

13.
A novel nonlinear time-varying model termed as the fuzzy parameter varying (FPV) system is proposed in this research, which inherits both advantages of the conventional T-S fuzzy system in dealing with nonlinear plants and strengths of the linear parameter varying (LPV) system in handling time-varying features. It is, therefore, an attractive mathematical model to efficiently approximate a nonlinear time-varying plant or to serve as a type of time-varying controller. Using the full block S-procedure, sufficient stability conditions have been derived in the form of linear matrix inequalities (LMIs) to test quadratic stability of the open-loop FPV system. Moreover, sufficient conditions have been derived on synthesizing both state feedback and dynamical output feedback fuzzy gain-scheduling controllers that can stabilize the FPV system. An inverted pendulum with a variable length pole is utilized to demonstrate advantages of the FPV system compared to the conventional T-S fuzzy system in representing a practical time-varying nonlinear plant and to validate the controller synthesis conditions.  相似文献   

14.
This paper is concerned with the problem of discrete-time event-triggered H control for networked cascade control systems (NCCSs) with time-varying network-induced delay. First of all, an event-triggered scheme is introduced to this system for reducing the unnecessary waste of limited network bandwidth resources. Considering the effect of time-varying delay, a new mathematical model for this system is constructed. In this paper, based on the model and Lyapunov functional method, the co-design method of event-triggered parameter, state feedback primary controller and secondary controller with H performance is derived via linear matrix inequality technique. To illustrate the effectiveness of the proposed method, a simulation example considering a main steam temperature cascade control system is given. The proposed method emphasizes the application in the corresponding industrial control systems, it can be found that this method is superior to the one in some existing references, and the provided example demonstrates the effectiveness of the co-design method in the networked cascade control systems with event-triggered scheme.  相似文献   

15.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

16.
In the presence of uncertain time-varying control coefficients, structuring parameter uncertainty and unknown state time delay, this paper proposes a continuous feedback control scheme for highly nonlinear systems without extra nonlinear growth restriction. An expansion of the backstepping method is presented based on dynamic gains and tuning functions. By Lyapunov–Krasovskii functionals, a delay-free controller is designed to regulate the original system states to zero with the other states being globally bounded.  相似文献   

17.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

18.
《Journal of The Franklin Institute》2023,360(14):10517-10535
Variable fractional-order (VFO) differential equations are a beneficial tool for describing the nonlinear behavior of complex dynamical phenomena. In comparison with the constant FO derivatives, it describes the memory properties of such systems that can vary in the time domain and spatial location. This article investigates the stability and stabilization of VFO neutral systems in the presence of time-varying structured uncertainties and time-varying delay. FO Lyapunov theorem is adopted to achieve order-dependent and delay-dependent criteria for both nominal and uncertain VFO neutral delay systems. The obtained conditions are given in respect of linear matrix inequality by designing a delayed state feedback controller. Simulations verify the main results.  相似文献   

19.
In this paper, we investigate the static output-feedback stabilization problem for LTI positive systems with a time-varying delay in the state and output vectors. By exploiting the induced monotonicity, necessary and sufficient conditions ensuring exponential stability of the closed-loop system are first quoted. Based on the derived stability conditions, necessary and sufficient stabilization conditions are formulated in terms of matrix inequalities. This general setting is then transformed into suitable vertex optimization problems by which necessary and sufficient conditions for the existence of a desired static output-feedback controller are obtained. The proposed synthesis conditions are presented in the form of linear programming conditions, which can be effectively solved by various convex algorithms.  相似文献   

20.
This paper investigates the output feedback control for a class of stochastic nonlinear time delay systems based on dynamic gain technique. The nonlinear terms of the stochastic system satisfy linear growth condition on unmeasured state variables with the output dependent incremental rate, which makes the studied time delay stochastic system more general than the exiting results. Firstly, the full order dynamic gain observer is constructed. Then, the linear-like controller is designed without using recursive design method. Next, the stability analysis is given and a useful corollary is obtained. Finally, a simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号