首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
This paper mainly studies the stabilization of differently structured highly nonlinear hybrid neutral stochastic systems by delay feedback control. Based on the existing works, our new neutral type stochastic system has completely different highly nonlinear structures in switching subspaces, which is more general and applicable. When such a system is given unstable, we focus on studying the asymptotic and exponential stability criteria by designing a feedback control with a time delay for the underlying system. A simulating example is shown to illustrate the feasibility of these results.  相似文献   

2.
Competitive neural networks(CNNs) has not been well developed in nonlinear fractional order dynamical system, which is developed first time in this paper. Then, by means of a proper Lyapunov functional, asymptotic expansion of Mittag-Leffler function properties, together with some Caputo derivative properties, the testable novel sufficient conditions are given to guarantee the existence, uniqueness of the equilibrium point as well as global asymptotic stability for a class of fractional order competitive neural networks (FOCNNs) are all derived in the form of matrix elements. Furthermore, the boundedness for the solution of FOCNN is presented by employing Cauchy–Schwartz inequality and Gronwall inequality. Besides, a linear feedback control and adaptive feedback control are designed to achieve the global asymptotic synchronization criterion for FOCNNs with time delay and these explored consequences are extended from some previous integer order CNNs output. At last, two numerical simulations are performed to illustrate the effectiveness of our proposed theoretical results.  相似文献   

3.
This paper investigates an event-triggered control design approach for discrete-time linear parameter-varying (LPV) systems under control constraints. The proposed conditions can simultaneously design a parameter-dependent dynamic output feedback controller and an event generator, ensuring the closed-loop system’s regional asymptotic stability. Based on the Lyapunov stability theory, these conditions are given in terms of linear matrix inequalities (LMIs). Moreover, using some proposed optimization procedures, it is possible to minimize the number of sensor transmissions, maximize the estimation of the region of attraction of the origin, and incorporate optimal control criteria into the formulation. Through numerical examples, some comparisons with other approaches in the literature evidence the proposed technique’s efficacy.  相似文献   

4.
This paper investigates the output feedback control for a class of stochastic nonlinear time delay systems based on dynamic gain technique. The nonlinear terms of the stochastic system satisfy linear growth condition on unmeasured state variables with the output dependent incremental rate, which makes the studied time delay stochastic system more general than the exiting results. Firstly, the full order dynamic gain observer is constructed. Then, the linear-like controller is designed without using recursive design method. Next, the stability analysis is given and a useful corollary is obtained. Finally, a simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

6.
The problem of robust stabilization for a class of dynamic systems with time-varying state delay as well as parametric and input uncertainties is considered in this paper. Several delay-independent stabilizability criteria and memoryless state feedback controllers are presented to guarantee the asymptotic stability of the closed-loop uncertain time-delay systems. It is shown that if all uncertainties and delay terms are matched, then the mentioned systems can always be stabilized, or can be stabilized with a specified decaying rate.  相似文献   

7.
This paper is concerned with the problem of global robust asymptotic stability for delayed neural networks with polytopic parameter uncertainties and time-varying delay. A delay-dependent and parameter-dependent robust stability criterion for the equilibrium of delayed neural networks in the face of polytopic type uncertainties is presented by using a parameter-dependent Lyapunov functional and taking the relationship between the terms in the Leibniz–Newton formula into account. This criterion, expressed as a set of linear matrix inequalities, requires no matrix variable to be fixed for the entire uncertainty polytope, which produces a less conservative stability result.  相似文献   

8.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

9.
In this paper, the exponentially stable problem is discussed for a class of stochastic strict feedforward nonlinear systems. Firstly, by employing the proper coordinate transformation and the novel parameter-dependent controller, the initial stochastic strict feedforward nonlinear system is converted to an equivalent system. After that, the implementable parameter-dependent controller, which is adopted to handle the nonlinearities, can be achieved by reasonably selecting the designed parameter. Finally, by means of stochastic Lyapunov stability theory, it is rigorously verified that the proposed parameter-dependent state-feedback controller and parameter-dependent output-feedback controller can guarantee that the stochastic closed-loop system is the fourth moment exponentially stable. Simulation results demonstrate the efficiency of the proposed parameter-dependent controller.  相似文献   

10.
The purpose of fault diagnosis of stochastic distribution control (SDC) systems is to use the measured input and the system output probability density functions (PDFs) to obtain the fault information of the SDC system. When the target PDF is known, the purpose of fault tolerant control of stochastic distribution control system is to make the output PDF still track the given distribution using the fault tolerant controller. However, in practice, time delay may exist in the data (or image) processing, the modeling and transmission phases. When time delay is not considered, the effectiveness of the fault detection, diagnosis and fault tolerant control of stochastic distribution systems will be reduced. In this paper, the rational square-root B-spline is used to approach the output probability density function. In order to diagnose the fault in the dynamic part of such systems, it is then followed by the novel design of a nonlinear neural network observer-based fault diagnosis algorithm. The time delay term will be deleted in the stability proof of the observation error dynamic system. Based on the fault diagnosis information, a new fault tolerant controller based on PI tracking control is designed to make the post-fault probability density function still track the given distribution, which is dependent of the time delay term. Finally, simulations for the particle distribution control problem are given to show the effectiveness of the proposed approach.  相似文献   

11.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

12.
This paper is concerned with the stabilization of linear systems with both pointwise and distributed input delays, which can be arbitrarily large yet exactly known. The state vector used in the well-known Artstein transformation is firstly linked with the future state of the system. Pseudo-predictor feedback (PPF) approaches are then established to design memory stabilizing controllers. Necessary and sufficient conditions guaranteeing the stability of the closed-loop system are established in terms of the stability of some integral delay systems. Furthermore, since the PPF still is infinite-dimensional state feedback law and may cause difficulties in their practical implementation, truncated pseudo-predictor feedback (TPPF) approaches are established to design finite dimensional (memoryless) controllers. It is shown that the pointwise and distributed input delays can be compensated properly by the TPPF as long as the open-loop system is polynomially unstable. Finally, two numerical examples, one of which is the spacecraft rendezvous control system, are carried out to support the obtained theoretical results.  相似文献   

13.
Novel nonlinear damping control is proposed for the second-order systems. The proportional output feedback is combined with the damping term which is quadratic to the output derivative and inverse to the set-point distance. The global asymptotic stability, passivity property, and convergence time and accuracy are demonstrated. Also the control saturation case is explicitly analyzed. The suggested nonlinear damping is denoted as optimal since requiring no additional design parameters and ensuring a fast convergence, without transient overshoots for a non-saturated and one transient overshoot for a saturated control configuration.  相似文献   

14.
This paper investigates the global asymptotic stability of stochastic fuzzy Markovian jumping neural networks with mixed delays under impulsive perturbations in mean square. The mixed delays include constant delay in the leakage term (i.e., “leakage delay”), time-varying delay and continuously distributed delay. By using the Lyapunov functional method, reciprocal convex approach, linear convex combination technique, Jensen integral inequality and the free-weight matrix method, several novel sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point of the considered networks in mean square. The proposed results, which do not require the differentiability and monotonicity of the activation functions, can be easily checked via Matlab software. Finally, two numerical examples are given to demonstrate the effectiveness and less conservativeness of our theoretical results over existing literature.  相似文献   

15.
16.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

17.
This paper investigates the problem of stochastic stability and stabilization of stochastic Markovian jump delay systems (SMJDSs) based on LaSalle theorem. The time delays are assumed to be time-varying and numerous stochastic disturbances are considered. Attention is focused on the design of the mode-dependent state feedback controller for SMJDSs based on LaSalle theorem such that the closed-loop SMJDSs are almost surely asymptotically stable. The sufficient conditions for the solvability of the state feedback control problem are obtained in terms of linear matrix inequalities (LMIs). When the LMIs are feasible, the desired state feedback controller is also given. Two numerical examples including the vertical take-off and landing (VTOL) helicopter system are employed to demonstrate the effectiveness and usefulness of the method proposed in this paper  相似文献   

18.
In this paper, a hybrid triple delayed prey predator bioeconomic system with prey refuge and Lévy jumps is established, where both maturation delay for prey and predator population and gestation delay for predator population are considered. For deterministic system, positivity and uniform permanence of solution are discussed. Local stability of deterministic system around interior equilibrium is investigated due to variations of triple time delays. For stochastic system without time delay, sufficient conditions for stochastically ultimate boundedness and stochastic permanence are discussed. Existence of stochastic Hopf bifurcation and stochastic stability are investigated. For stochastic system with triple time delays, existence and uniqueness of global positive solution are studied. Finally, combined dynamic effects of triple time delays and Lévy jumps on the hybrid stochastic system are discussed by constructing appropriate Lyapunov functions. Numerical simulations are supported to illustrate theoretical analysis.  相似文献   

19.
The observer-based feedback control for the two-level bilinear open stochastic quantum system is proposed in this paper. The state of open stochastic quantum system (OSQS) is described in the Cartesian coordinate system. The proposed state observer is designed by using state-dependent differential Riccati equation (SDDRE) and constructed for optimally estimating the state of OSQS from measurement output of the system. The state of observer is continuously updated by the output data of continuous weak measurement (CWM). A Lyapunov Feedback control is designed based on estimated state of the observer for the state transfer of OSQS. An exponential Lyapunov function is chosen to ensure the stability of the system. The observer-based Lyapunov feedback control (OLFC) strategy is developed according to the stochastic Lyapunov stability theorem. The numerical simulation results verify the achievability of the proposed OLFC strategy in terms of state estimation and state transfer of OSQS. Numerical simulations demonstrate that the observer tracks the state of system asymptotically with minimum error of ± 3%. The proposed OLFC has the ability to move the state of OSQS from arbitrary initial state to the final target eigenstate with high fidelity ≥ 90%.  相似文献   

20.
This paper studies the problem of decentralized stabilization for a class of large-scale stochastic high-order time-delay feedforward nonlinear systems. A series of delay-independent state feedback controllers is constructed, which is based on the approach of adding one power integrator. The stochastically global asymptotic stability (GAS) of the closed-loop system under the above-mentioned controllers is proved by Lyapunov–Krasovskii theorem and homogeneous domination approach. A simulation example is given to illustrate the effectiveness of the results of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号