首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
2.
We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.  相似文献   

3.
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force–time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.  相似文献   

4.
ABSTRACT

Imitation jumps are frequently used in training for ski jumping. Yet, the dynamics of these jumps differ considerably. Thus, the relevance of imitation jumps for ski jumping performance is not elucidated. The aim of this study was to investigate the relationship between the technical execution of imitation jumps and ski jumping performance level. We compared the imitation jumps of 11 ski jumpers of different performance levels using a Spearman correlation transform of time traces of the kinetics (measured using force cells and motion capture) of imitation jumps. The kinetic aspects that were related to performance centred on the moment arm of ground reaction force to the centre of mass before the onset of the push-off, angular momentum early in push-off, thigh angle during the main period of push-off and vertical velocity towards the end of push-off. We propose that the thigh angle may be a key element allowing high development of linear momentum while preparing for appropriate aerodynamic position. Furthermore, the findings suggest that the kinetic development prior to (and during) push-off is more important than the kinematic end state at take-off.  相似文献   

5.
Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.  相似文献   

6.
基于抛物体理论和动力学方程,该研究分别计算了无空气影响和有空气影响时跳台滑雪飞行的远度,并运用生物力学的专业理论对影响跳台滑雪运动成绩的相关因素进行了分析,以期为跳台滑雪的运动训练和有效提高跳台滑雪的运动成绩提供一定的参考依据。  相似文献   

7.
In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical (P < 0.001), horizontal (P < 0.05) and resultant (P < 0.001) take-off velocities and vertical force impulse (P < 0.01). We found no significant differences in the jumpers' initial take-off positions; however, the jumping boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle (P < 0.001), knee angle (P < 0.001), hip angle (P < 0.01) and shank angle relative to the horizontal (P < 0.01). This corresponds with less electromyographic activity during take-off in both the gastrocnemius (300 to 200 ms and 200 to 100 ms before take-off) and gluteus maximus (300 to 200 ms and 100 to 0 ms before take-off). During the early take-off in the jumping boots condition, significantly more pressure was recorded under the heel (P < 0.001), whereas the forefoot was more highly loaded at the end of the take-off. Differences in take-off velocity (representing the final output of the take-off) can be accounted for in the main by the different use of plantar flexion, emphasizing the role of the knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.  相似文献   

8.
基于抛物体理论和动力学方程,该研究分别计算了无空气影响和有空气影响时跳台滑雪飞行的远度,并运用生物力学的专业理论对影响跳台滑雪运动成绩的相关因素进行了分析,以期为跳台滑雪的运动训练和有效提高跳台滑雪的运动成绩提供一定的参考依据。  相似文献   

9.
In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical ( P ? 0.001), horizontal ( P ? 0.05) and resultant ( P ? 0.001) take-off velocities and vertical force impulse ( P ? 0.01). We found no significant differences in the jumpers' initial take-off positions; however, the jumping boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle ( P ? 0.001), knee angle ( P ? 0.001), hip angle ( P ? 0.01) and shank angle relative to the horizontal ( P ? 0.01). This corresponds with less electromyographic activity during take-off in both the gastrocnemius (300 to 200 ms and 200 to 100 ms before take-off) and gluteus maximus (300 to 200 ms and 100 to 0 ms before take-off). During the early take-off in the jumping boots condition, significantly more pressure was recorded under the heel ( P ? 0.001), whereas the forefoot was more highly loaded at the end of the take-off. Differences in take-off velocity (representing the final output of the take-off) can be accounted for in the main by the different use of plantar flexion, emphasizing the role of the knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.  相似文献   

10.
The energy contribution of the lower extremity joints to vertical jumping and long jumping from a standing position has previously been investigated. However, the resultant joint moment contributions to vertical and long jumps performed with a running approach are unknown. metatarsophalangeal joint to these activities has not been investigated. The objective of this study was to determine the mechanical energy contributions of the hip, knee, ankle and metatarsophalangeal joints to running long jumps and running vertical jumps. A sagittal plane analysis was performed on five male university basketball players while performing running vertical jumps and four male long jumpers while performing running long jumps. The resultant joint moment and power patterns at the ankle, knee and hip were similar to those reported in the literature for standing jumps. It appears that the movement pattern of the jumps is not influenced by an increase in horizontal velocity before take-off. The metatarsophalangeal joint was a large energy absorber and generated only a minimal amount of energy at take-off. The ankle joint was the largest energy generator and absorber for both jumps; however, it played a smaller relative role during long jumping as the energy contribution of the hip increased.  相似文献   

11.
为了探讨短距离助跑跳远这一练习方法的运动生物力学意义,本文对跳远运动员的短距离助跑和全程助跑跳远进行高速摄影和三维测力的同步测试.并通过对其分析和研究,结果表明:1)短距离助跑与全程助跑的水平速度、跳跃距离之差约为10%;2)起跳时间和力作用于垂直方向的时间比全程助跑长;3)腾起角度大于全程助跑;4)身体重心腾起高度和滞空时间与全程助跑相同。  相似文献   

12.
目的:通过分析我国优秀男子跳台滑雪运动员实地起跳阶段运动学、起跳运动模式等指标,探究影响我国男子跳台滑雪运动员飞行距离的主要起跳因素。方法:1)选择8名我国男子跳台滑雪运动员作为研究对象,在日本长野县白马村K90跳台训练基地采集3次起跳阶段二维运动学数据,采用广义估计模型(GEE)分析影响飞行距离的实地起跳阶段运动学因素。2)截取平昌冬奥会排名前10的男子跳台滑雪选手决赛起跳阶段视频数据,采用单因素方差分析研究国内外运动员起跳阶段特定时刻肢体角度差异。3)实验室内使用1台Z camera高速摄像机和1块Kistler 9281EA测力台采集运动员静蹲跳(squat jump,SJ)、反向跳(countermovement jump,CMJ)、模拟跳跃(imitation jump,IJ)、下落跳(drop jump,DJ)的动力学及运动学数据,采用Pearson相关分析检验实验室内运动学及动力学指标与飞行距离间的相关性。结果:1)在实地起跳阶段运动学方面,起跳起始时刻躯干与助滑道夹角、小腿与助滑道夹角、髋关节角、膝关节角,以及起跳阶段的髋关节峰值角速度、膝关节平均角速度、起跳结束时刻膝关节角及髋关节角为飞行距离的影响因素(P<0.05)。2)在起跳阶段运动模式及力量特点方面,IJ重心最低处膝外翻指数(r=0.731)、DJ膝外翻最小值(r=0.713)、CMJ起跳阶段地面反作用力峰值(r=0.710)、CMJ蹬伸冲量(r=0.752)、SJ(r=0.723)及CMJ起跳峰值功率(r=0.762)均与飞行距离呈正相关。3)对比国内外运动员起跳阶段特定时刻肢体角度发现,国外优秀运动员起跳起始时刻小腿与助滑道夹角(53.54°±3.14°)显著小于我国运动员(57.62°±4.62°),出台瞬间小腿与助滑道夹角(58.22°±2.13°)显著小于我国运动员(65.59°±3.84°),大腿与助滑道夹角(73.28°±6.15°)显著大于我国运动员(58.77°±3.16°),起跳阶段结束时刻髋关节角度(175.23°±1.96°)显著大于我国运动员(156.37°±13.13°)。结论:我国跳台滑雪运动员起跳阶段起跳起始时刻应尽量降低身体重心以减少阻力,并适当提高膝关节角来提高出台后肢体伸展程度。起跳过程中提高膝关节蹬伸力量,同时适当降低髋关节伸展速度,避免风阻对躯干造成不利影响。室内及实地训练过程中,应在提升蹬伸爆发力的同时避免膝关节过度外翻,提高蹬伸力量及传递效率。  相似文献   

13.
Progress in micro-electromechanical systems has turned inertial sensor units (IUs) into a suitable tool for vertical jumping evaluation. In total, 9 men and 8 women were recruited for this study. Three types of vertical jumping tests were evaluated in order to determine if the data provided by an IU placed at the lumbar spine could reliably assess jumping biomechanics and to examine the validity of the IU compared with force plate platform recordings. Robust correlation levels of the IU-based jumping biomechanical evaluation with respect to the force plate across the entire analysed jumping battery were found. In this sense, significant and extremely large correlations were found when raw data of both IU and force plate-derived normalised force–time curves were compared. Furthermore, significant and mainly moderate correlation levels were also found between both instruments when isolated resultant forces’ peak values of predefined jumping phases of each manoeuvre were analysed. However, Bland and Altman graphical representation demonstrated a systematic error in the distribution of the data points within the mean ±1.96 SD intervals. Using IUs, several biomechanical variables such as the resultant force–time curve patterns of the three different vertical jumps analysed were reliably measured.  相似文献   

14.
研究目的:跳落动作作为影响人体下肢运动生物力学和运动损伤的重要因素之一,近年来引起学者的广泛关注,对于超重人群而言,探讨跳落相关运动损伤尤为重要。研究方法:本文主要采取文献资料法,总结了超重人群相关损伤因素以及跳落模式对人体下肢的运动学、动力学、肌肉激活以及运动损伤的影响。研究结果与结论:目前研究发现对于超重人群的落地研究主要在下肢运动学、动力学和肌肉激活上存在差异,且大多为双腿跳落,对于冠状面、水平面的三维运动学、动力学的研究较少。而且,目前针对超重人群不同高度跳落研究相对有限,对于超重人群在不同高度跳落的落地模式相关的生物力学机制还不够清楚,需要更进一步研究。  相似文献   

15.
We examined the effect of boundary conditions in imitation ski jumping on movement dynamics and coordination. We compared imitation ski jumps with – and without – the possibility to generate shear propulsion forces. Six elite ski jumpers performed imitation jumps by jumping from a fixed surface and from a rolling platform. The ground reaction force vector, kinematics of body segments, and EMG of eight lower limb muscles were recorded. Net joint dynamics were calculated using inverse dynamics. The two imitation jumps differed considerably from each other with regard to the dynamics (moments, forces), whereas the kinematics were very similar. Knee power was higher and hip power was lower on the rolling platform than on the fixed surface. Mean EMG levels were very similar for both conditions, but differences in the development of muscle activity were indicated for seven of eight muscles. These differences are reflected in a subtle difference of the alignment of ground reaction force with centre of mass: the ground reaction force runs continuously close to but behind the centre of mass on the rolling platform and fluctuates around it on the fixed surface. This likely reflects a different strategy for controlling angular momentum.  相似文献   

16.
The aim of this study was to analyse the significance of various biomechanical parameters in swim start performance for the grab and track start techniques. To do so, structural equation models were analysed, incorporating measurements for the take-off phase, flight phase and entry phase. Forty-six elite German swimmers (18 female and 28 male; age: 20.1 ± 4.2 yrs; PB (100 m Freestyle): 53.6 ± 2.9 s) participated in the study. Their swim start performance was examined within a 25-m sprint test. Structural equation modelling was conducted in separate models for the block time, flight time and water time and in a combined model for swim start time. Our main finding was that swim start time is predominantly related to water time and determined to a lesser extent by block time and flight time. We conclude that more emphasis should be given to the water immersion behaviour and the gliding phase when analysing swim start performance. Furthermore, significant differences were found between the grab start and track techniques as regards the biomechanical parameters representing the take-off phase and water phase.  相似文献   

17.
Ski jumping flight posture was analyzed for achieving large flight distance on the basis of high-speed video images of the initial 40 m part of 120-m ski jumping flight. The time variations of the forward leaning angle and the ski angle of attack were measured from the video images, and the aerodynamic forces were calculated from the kinematic data derived from the images. Some correlations were investigated between the initial-speed corrected flight distance and such parameters as the angles of jumper, the initial transition time and the aerodynamic force coefficients. The result indicated that small body angle of attack was a key for large flight distance in the initial phase of flight because of small drag force, and that the most distinctive fault of beginners was too large body angle of attack and ski angle of attack leading to aerodynamic stall. Too small drag force does not give an optimal condition for large flight distance because the lift force is also too small. The ratio of the lift to the drag was larger than 0.95 for advanced jumpers.  相似文献   

18.
Warm-up protocols are commonly used to acutely enhance the performance of dynamic activities. This study examined the acute effect of low-load gluteal exercises on the biomechanics of single-leg drop jumps. Eight men and seven women (18–22 years old) performed 10 single-leg drop jumps on three separate days. The gluteal exercises were performed within the warm-up on day 2. Contact time, flight time, peak vertical ground reaction force (GRF), rate of force development, vertical leg-spring stiffness, and reactive strength index were determined. A repeated measures analysis of variance was used to examine differences on all variables across days. Significant differences were found for contact time, peak GRF, and flight time between days 1 and 2 and for flight time between days 1 and 3 (p ≤ 0.05) with no significant difference in any variables between days 2 and 3. This suggested that the improvements in day 2 were due to practice effects rather than the gluteal activation exercises. In addition, a typical error analysis was used to determine individual responses to the gluteal exercises. The results using this analysis showed no discernible response pattern of enhancement or fatigue for any participant.  相似文献   

19.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

20.
In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号