首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test ([Vdot]O2peak 71.4 ± 3.2 ml · kg?1 · min?1) and four ~40 min laboratory cycling time trials in a heat chamber (34.3°C ± 1.1°C; 41.2% ± 3.0% rh) using a fixed-power/variable-power format. Cyclists prepared for the time trial using three techniques administered in a randomised order prior to the warm-up: (1) no cooling (control), (2) cooling jacket for 40 min (jacket) or (3) 30-min water immersion followed by a cooling jacket application for 40 min (combined). Rectal temperature prior to the time trial was 37.8°C ± 0.1°C in control, similar in jacket (37.8°C ± 0.3°C) and lower in combined (37.1°C ± 0.2°C, P < 0.01). Compared with the control trial, time trial performance was not different for jacket precooling (?16 ± 36 s, ?0.7%; P = 0.35) but was faster for combined precooling (?42 ± 25 s, ?1.8%; P = 0.009). In conclusion, a practical combined precooling strategy that involves immersion in cool water followed by the use of a cooling jacket can produce decrease in rectal temperature that persist throughout a warm-up and improve laboratory cycling time trial performance in warm conditions.  相似文献   

2.
Abstract

To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10°C, 15°C and 20°C water, continuous cold water immersion in 20°C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P < 0.05; 2.0 ± 0.8 mmol · l?1) compared with all cold water immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.  相似文献   

3.
The thermoregulatory responses of upper-body trained athletes were examined at rest, during prolonged arm crank exercise and recovery in cool (21.5 ± 0.9°C, 43.9 ± 10.1% relative humidity; mean ± s) and warm (31.5 &± 0.6°C, 48.9 - 8.4% relative humidity) conditions. Aural temperature increased from rest by 0.7 ± 0.7°C (P ? 0.05) during exercise in cool conditions and by 1.6 ± 0.7°C during exercise in warm conditions (P ? 0.05). During exercise in cool conditions, calf skin temperature decreased (1.5 ± 1.3°C), whereas an increase was observed during exercise in warm conditions (3.0 ± 1.7°C). Lower-body skin temperatures tended to increase by greater amounts than upper-body skin temperatures during exercise in warm conditions. No differences were observed in blood lactate, heart rate or respiratory exchange ratio responses between conditions. Perceived exertion at 45 min of exercise was greater than that reported at 5 min of exercise during the cool trial (P ? 0.05), whereas during exercise in the warm trial the rating of perceived exertion increased from initial values by 30 min (P ? 0.05). Heat storage, body mass losses and fluid consumption were greater during exercise in warm conditions (7.06 ± 2.25 J·g-1 ·°C-1, 1.3 ± 0.5 kg and 1038 ± 356 ml, respectively) than in cool conditions (1.35 ± 0.23 J·g-1·°C-1, 0.8 ± 0.2 kg and 530 ± 284 ml, respectively; P ? 0.05). The results of this study indicate that the increasing thermal strain with constant thermal stress in warm conditions is due to heat storage within the lower body. These results may aid in understanding thermoregulatory control mechanisms of populations with a thermoregulatory dysfunction, such as those with spinal cord injuries.  相似文献   

4.
Skin and core tissue cooling modulates skeletal muscle oxygenation at rest. Whether tissue cooling also influences the skeletal muscle deoxygenation response during exercise is unclear. We evaluated the effects of skin and core tissue cooling on skeletal muscle blood volume and deoxygenation during sustained walking and running. Eleven male participants walked or ran six times on a treadmill for 60 min in ambient temperatures of 22°C (Neutral), 0°C for skin cooling (Cold 1), and at 0°C following a core and skin cooling protocol (Cold 2). Difference between oxy/deoxygenated haemoglobin ([diffHb]: deoxygenation index) and total haemoglobin content ([tHb]: total blood volume) in the vastus lateralis (VL) muscle was measured continuously. During walking, lower [tHb] was observed at 1 min in Cold 1 and Cold 2 vs. Neutral (P?0.05). Lower [diffHb] was seen at 1 and 10 min in Cold 2 vs. Neutral by 13.5 ± 1.2 µM and 15.3 ± 1.4 µM and Cold 1 by 10.4 ± 3.1 µM and 11.1 ± 4.1 µM, respectively (P?0.05). During running, [tHb] was lower in Cold 2 vs. Neutral at 10 min only (P = 0.004). [diffHb] was lower at 1 min in Cold 2 by 11.3 ± 3.1 µM compared to Neutral and by 13.5 ± 2.8 µM compared to Cold 1 (P?0.001). Core tissue cooling, prior to exercise, induced greater deoxygenation of the VL muscle during the early stages of exercise, irrespective of changes in blood volume. Skin cooling alone, however, did not influence deoxygenation of the VL during exercise.  相似文献   

5.
This study compared heart rate recovery (HRR) after incremental maximal exercise performed at the same external power output (Pext) on dry land ergocycle (DE) vs. immersible ergocycle (IE). Fifteen young healthy participants (30?±?7 years, 13 men and 2 women) performed incremental maximal exercise tests on DE and on IE. The initial Pext on DE was 25?W and was increased by 25?W/min at a pedalling cadence between 60 and 80?rpm, while during IE immersion at chest level in thermoneutral water (30°C), the initial Pext deployment was at a cadence of 40?rpm which was increased by 10?rpm until 70?rpm and thereafter by 5?rpm until exhaustion. Gas exchange and heart rate (HR) were measured continuously during exercise and recovery for 5?min. Maximal HR (DE: 176?±?15 vs. IE 169?±?12?bpm) reached by the subjects in the two conditions did not differ (P?>?.05). Parasympathetic reactivation parameters (ΔHR from 10 to 300?s) were compared during the DE and IE HR recovery recordings. During the IE recovery, parasympathetic reactivation in the early phase was more predominant (HRR at Δ10–Δ60?s, P?<?.05), but similar in the late phase (HRR at Δ120–Δ300?s, P?>?.05) when compared to the DE condition. In conclusion, incremental maximal IE exercise at chest level immersion in thermoneutral water accelerates the early phase parasympathetic reactivation compared to DE in healthy young participants.  相似文献   

6.
During the competitive season, soccer players are likely exposed to numerous factors that may disrupt the process of sleep. The current investigation looked to evaluate a practical sleep hygiene strategy (10-min showering at ~40°C before lights out), within a group of 11 youth soccer players in comparison to normal sleeping conditions (control). Each condition consisted of three days within a randomised crossover trial design. Sleep information was collected using a commercial wireless bedside sleep monitor. Measures of skin temperature were evaluated using iButton skin thermistors to establish both distal and proximal skin temperatures and distal to proximal gradient. The shower intervention elevated distal skin temperature by 1.1°C (95% CI: 0.1–2.1°C, p?=?.04) on average prior to lights out. The elevation in distal temperature was also present during the first 30-min following lights out (1.0°C, 95% CI: 0.4–1.6°C, p?<?.01). The distal to proximal gradient also showed a significant effect between the conditions within the first 30-min after lights out (0.7°C, 95% CI: 0.3–1.2°C, p?<?.01). On average the sleep latency of the youth soccer players was ?7-min lower (95% CI: ?13 to ?2?min, p?<?.01) and sleep efficiency +2% higher (95% CI: 1–3%; p?<?.01) in the shower condition. These findings demonstrate that a warm shower performed before lights out may offer a practical strategy to promote thermoregulatory changes that may advance sleep onset latency and improve sleep efficiency in athletes.  相似文献   

7.
This study examined the influence of body composition on temperature and blood flow responses to post-exercise cold water immersion (CWI), hot water immersion (HWI) and control (CON). Twenty-seven male participants were stratified into three groups: 1) low mass and low fat (LM-LF); 2) high mass and low fat (HM-LF); or 3) high mass and high fat (HM-HF). Experimental trials involved a standardised bout of cycling, maintained until core temperature reached 38.5°C. Participants subsequently completed one of three 15-min recovery interventions (CWI, HWI, or CON). Core, skin and muscle temperatures, and limb blood flow were recorded at baseline, post-exercise, and every 30 min following recovery for 240 min. During CON and HWI there were no differences in core or muscle temperature between body composition groups. The rate of fall in core temperature following CWI was greater in the LM-LF (0.03 ± 0.01°C/min) group compared to the HM-HF (0.01 ± 0.001°C/min) group (P = 0.002). Muscle temperature decreased to a greater extent during CWI in the LM-LF and HM-LF groups (8.6 ± 3.0°C) compared with HM-HF (5.1 ± 2.0°C, P < 0.05). Blood flow responses did not differ between groups. Differences in body composition alter the thermal response to post-exercise CWI, which may explain some of the variance in the responses to CWI recovery.  相似文献   

8.
To examine the influence of pre-warming on the physiological responses to prolonged intermittent exercise in ambient temperatures of 21.5?±?0.6°C and relative humidities of 35.7?±?5.4% (mean?±?s), six healthy men performed intermittent treadmill running (30-s bouts at 90% of maximal oxygen uptake separated by 30-s static recovery periods) to exhaustion after active pre-warming, passive pre-warming and pre-exercise rest (control). Exercise time to exhaustion was significantly different between all conditions (active, 51.8?±?7.2?min; passive, 38.5?±?11.1?min; control, 72.0?±?17.2?min; P <?0.05). These changes in performance time were closely associated with a significant decline in both the rate of heat storage and heat storage capacity (P <?0.05). Rectal temperature, heart rate and ratings of perceived exertion were significantly higher during exercise in the two pre-warming conditions than in the control condition (P <?0.05). Ratings of perceived exertion were also significantly higher during exercise following passive pre-warming compared with active pre-warming (P <?0.05). During exercise there were no significant differences in serum prolactin, plasma norepinephrine and plasma free fatty acid concentrations between conditions. We conclude that both active and passive pre-warming promote a reduction in prolonged intermittent exercise capacity in environmental temperatures of 21°C compared with pre-exercise rest. These performance decrements were dependent upon the mode of pre-warming and closely reflected alterations in body heat content.  相似文献   

9.
Abstract

In this study, we examined thermoregulatory responses to ingestion of separate aliquots of drinks at different temperatures during low-intensity exercise in conditions of moderate heat stress. Eight men cycled at 50% (s = 3) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.3°C, s = 0.5; relative humidity: 60%, s = 5). Four 400-ml aliquots of flavoured water at 10°C (cold), 37°C (warm) or 50°C (hot) were ingested after 30, 45, 60, and 75 min of exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. There were no differences between trials in rectal temperature at the end of the 90 min of exercise (cold: 38.11°C, s = 0.30; warm: 38.10°C, s = 0.33; hot: 38.21°C, s = 0.30; P = 0.765). Mean skin temperature between 30 and 90 min tended to be influenced by drink temperature (cold: 34.49°C, s = 0.64; warm: 34.53°C, s = 0.69; hot: 34.71°C, s = 0.48; P = 0.091). Mean heart rate from 30 to 90 min was higher in the hot trial (129 beats · min?1, s = 7; P < 0.05) than on the cold (124 beats · min?1, s = 9) and warm trials (126 beats · min?1, s = 8). Ratings of thermal sensation were higher on the hot trial than on the cold trial at 35 and 50 min (P < 0.05). Exercise capacity was similar between trials (P = 0.963). The heat load and debt induced by periodic drinking resulted in similar body temperatures during low-intensity exercise in conditions of moderate heat stress due to appropriate thermoregulatory reflexes.  相似文献   

10.
This investigation compared the effects of external pre-cooling and mid-exercise cooling methods on running time trial performance and associated physiological responses. Nine trained male runners completed familiarisation and three randomised 5 km running time trials on a non-motorised treadmill in the heat (33°C). The trials included pre-cooling by cold-water immersion (CWI), mid-exercise cooling by intermittent facial water spray (SPRAY), and a control of no cooling (CON). Temperature, cardiorespiratory, muscular activation, and perceptual responses were measured as well as blood concentrations of lactate and prolactin. Performance time was significantly faster with CWI (24.5 ± 2.8 min; = 0.01) and SPRAY (24.6 ± 3.3 min; = 0.01) compared to CON (25.2 ± 3.2 min). Both cooling strategies significantly (< 0.05) reduced forehead temperatures and thermal sensation, and increased muscle activation. Only pre-cooling significantly lowered rectal temperature both pre-exercise (by 0.5 ± 0.3°C; < 0.01) and throughout exercise, and reduced sweat rate (< 0.05). Both cooling strategies improved performance by a similar magnitude, and are ergogenic for athletes. The observed physiological changes suggest some involvement of central and psychophysiological mechanisms of performance improvement.  相似文献   

11.
This study compared the effects of a hand cooling glove (~16°C water temperature; subatmospheric pressure of ?40 mmHg) and a cooling jacket (CJ) on post-exercise cooling rates (gastrointestinal core temperature, Tc; skin temperature, Tsk) and cognitive performance (the Stroop Colour–Word test). Twelve male athletes performed four trials (within subjects, counterbalanced design) involving cycling at a workload equivalent to 75% ?O2max in heat (35.7?±?0.2°C, 49.2?±?2.6% RH) until a Tc of 39°C or exhaustion occurred. A 30-min cooling period (in 22.3?±?0.3°C, 42.1?±?3.6% RH) followed, where participants adopted either one-hand cooling (1H), two-hand cooling (2H), wore a CJ or no cooling (NC). No significant differences were seen in Tc and Tsk cooling rates between trials; however, moderate effect sizes (d?=?0.50–0.76) suggested Tc cooling rates to be faster for 1H, 2H and CJ compared to NC after 5 min; 1H and CJ compared to NC after 10 min and for CJ to be faster than 2H at 25–30 min. Reaction times on the cognitive test were similar between all trials after the 30 min cooling/no-cooling period (p?>?.05). In conclusion, Tc cooling rates were faster with 1H and CJ during the first 10 min compared to NC, with minimal benefit associated with 2H cooling. Reaction time responses were not impacted by the use of the glove(s) or CJ.  相似文献   

12.
Post-exercise cryotherapy treatments are typically short duration interventions. This study examined the efficacy of prolonged cooling using phase change material (PCM) on strength loss and pain after eccentric exercise. Eight adults performed 120 bilateral eccentric quadriceps contractions (90% MVC). Immediately afterwards, frozen PCM packs (15°C) were placed over the quadriceps, with room temperature PCM packs on the contralateral quadriceps. Skin temperature was recorded continually (6 h PCM application). Isometric quadriceps strength and soreness were assessed before, 24, 48, 72 and 96 h post-exercise. The protocol was repeated 5 months later, with room temperature PCM applied to both legs. There were three treatments: legs treated with 15°C PCM packs (direct cooling), legs treated with room temperature PCM packs contralateral to the 15°C PCM packs (systemic cooling), and legs tested 5 months later both treated with room temperature PCM packs (control). Skin temperature was 9°C–10°C lower with direct cooling versus systemic cooling and control (P < 0.01). Strength loss and soreness were less (P < 0.05) with direct cooling versus systemic cooling and control (strength 101%, 94%, 93%, respectively; pain 1.0, 2.3, 2.7, respectively). Six hours of PCM cooling was well tolerated and reduced strength loss and pain after damaging exercise.  相似文献   

13.
Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h?1 of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s?1. Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.  相似文献   

14.
Abstract

Nine males cycled at 53% (s = 2) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.4°C, s = 0.2; relative humidity: 61%, s = 3). One litre of flavoured water at 10 (cold), 37 (warm) or 50°C (hot) was ingested 30 – 40 min into exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. Rectal and mean skin temperatures and heart rate were recorded. The gradient of rise in rectal temperature was influenced (P < 0.01) by drink temperature. Mean skin temperature was highest in the hot trial (cold trial: 34.2°C, s = 0.5; warm trial: 34.4°C, s = 0.5; hot trial: 34.7°C, s = 0.6; P < 0.01). Significant differences were observed in heart rate (cold trial: 132 beats · min?1, s = 13; warm trial: 134 beats · min?1, s = 12; hot trial: 139 beats · min?1, s = 13; P < 0.05). Exercise capacity was similar between trials (cold trial: 234 s, s = 69; warm trial: 214 s, s = 52; hot trial: 203 s, s = 53; P = 0.562). The heat load and debt induced via drinking resulted in appropriate thermoregulatory reflexes during exercise leading to an observed heat content difference of only 33 kJ instead of the predicted 167 kJ between the cold and hot trials. These results suggest that there may be a role for drink temperature in influencing thermoregulation during exercise.  相似文献   

15.
Nine male student games players consumed either flavoured water (0.1 g carbohydrate, Na+ 6 mmol · l?1), a solution containing 6.5% carbohydrate-electrolytes (6.5 g carbohydrate, Na+ 21 mmol · l?1) or a taste placebo (Na+ 2 mmol · l?1) during an intermittent shuttle test performed on three separate occasions at an ambient temperature of 30°C (dry bulb). The test involved five 15-min sets of repeated cycles of walking and variable speed running, each separated by a 4-min rest (part A of the test), followed by 60 s run/60 s rest until exhaustion (part B of the test). The participants drank 6.5 ml · kg?1 of fluid as a bolus just before exercise and thereafter 4.5 ml · kg?1 during every exercise set and rest period (19 min). There was a trial order effect. The total distance completed by the participants was greater in trial 3 (8441 ± 873 m) than in trial 1 (6839 ± 512, P < 0.05). This represented a 19% improvement in exercise capacity. However, the trials were performed in a random counterbalanced order and the participants completed 8634 ± 653 m, 7786 ± 741 m and 7099 ± 647 m in the flavoured water (FW), placebo (P) and carbohydrate-electrolyte (CE) trials, respectively (P = 0.08). Sprint performance was not different between the trials but was impaired over time (FW vs P vs CE: set 1, 2.41 ± 0.02 vs 2.39 ± 0.03 vs 2.39 ± 0.03 s; end set, 2.46 ± 0.03 vs 2.47 ± 0.03 vs 2.47 ± 0.02 s; main

effect time, P < 0.01). The rate of rise in rectal temperature was greater in the carbohydrate-electrolyte trial (rise in rectal temperature/duration of trial, °C · h?1; FW vs CE, P < 0.05; P vs CE, N.S.). Blood glucose concentrations were higher in the carbohydrate-electrolyte than in the other two trials (FW vs P vs CE: rest, 4.4 ± 0.1 vs 4.3 ± 0.1 vs 4.2 ± 0.1 mmol · l?1; end of exercise, 5.4 ± 0.3 vs 6.4 ± 0.6 vs 7.2 ± 0.5 mmol · l?1; main effect trial, P < 0.05; main effect time, P < 0.01). Plasma free fatty acid concentrations at the end of exercise were lower in the carbohydrate-electrolyte trial than in the other two trials (FW vs P vs CE: 0.57 ± 0.08 vs 0.53 ± 0.11 vs 0.29 ± 0.04 mmol · l?1; interaction, P < 0.01). The correlation between the rate of rise in rectal temperature (°C · h?1) and the distance completed was ?0.91, ?0.92 and ?0.96 in the flavoured water, placebo and carbohydrate-electrolyte conditions, respectively (P < 0.01). Heart rate, blood pressure, plasma ammonia, blood lactate, plasma volume and rate of perceived exertion were not different between the three fluid trials. Although drinking the carbohydrate-electrolyte solution induced greater metabolic changes than the flavoured water and placebo solutions, it is unlikely that in these unacclimated males carbohydrate availability was a limiting factor in the performance of intermittent running in hot environmental conditions.  相似文献   

16.
The purpose of our study was to examine the physiological, perceptual, and performance effects of wearing a phase change cooling garment (CG) during an interval exercise routine in the heat. Sixteen male participants (age 23?±?3 years, ht 1.76?±?0.11?m; wt 78.5?±?11.2?kg; body fat 15.2?±?5.8%) completed two trials (one with phase change inserts, CG, and one control without inserts) consisting of two submaximal exercise portions separated by 5-minute seated rest, and a final maximal effort performance bout. Each submaximal bout involved 30?seconds or 1?minute of muscular endurance and agility exercises and 5?minutes of treadmill jogging and step-ups. The performance bout included 30?seconds or 1?minute of muscular endurance and agility exercises, with participants completing as many repetitions as possible, followed by a 15-minute recovery (active and passive). Rectal temperature (Tre) and heart rate were not different between trials, however change in Tre from baseline was improved during 10 and 15 minutes of recovery with the CG (P?<?.05). Mean skin temperature was lower using the CG vs control throughout the trial (P?<?.05). Thermal sensation was lower when using the CG compared to control (P?<?.001). There were no differences in any outcomes of the performance exercises (P?>?.05). These findings indicate that the continuous use of a CG during an interval style workout in the heat provides improvements in thermal sensation, however, only minimal thermophysiological benefits, and no performance augmentation.  相似文献   

17.
Abstract

In this study, we wished to determine whether a warm-up exercise consisting of 100 submaximal concentric contractions would attenuate delayed-onset muscle soreness and decreases in muscle strength associated with eccentric exercise-induced muscle damage. Ten male students performed two bouts of an elbow flexor exercise consisting of 12 maximal eccentric contractions with a warm-up exercise for one arm (warm-up) and without warm-up for the other arm (control) in a randomized, counterbalanced order separated by 4 weeks. Muscle temperature of the biceps brachii prior to the exercise was compared between the arms, and muscle activity of the biceps brachii during the exercise was assessed by surface integral electromyogram (iEMG). Changes in visual analogue scale for muscle soreness and maximal voluntary isometric contraction strength (MVC) of the elbow flexors were assessed before, immediately after, and every 24 h for 5 days following exercise, and compared between the warm-up and control conditions by a two-way repeated-measures analysis of variance. The pre-exercise biceps brachii muscle temperature was significantly (P<0.01) higher for the warm-up (35.8±0.2°C) than the control condition (34.4±0.2°C), but no significant differences in iEMG and torque produced during exercise were evident between conditions. Changes in muscle soreness and MVC were not significantly different between conditions, although these variables showed significant (P<0.05) changes over time. It was concluded that the warm-up exercise was not effective in mitigating delayed-onset muscle soreness and loss of muscle strength following maximal eccentric exercise.  相似文献   

18.
Abstract

In this study, we examined the effect of muscle temperature (T m) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (T m = 34.3°C, s = 0.6) and elevated (T m = 37.3°C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 – 25% IIX isoform), IIAX50 (26 – 50% IIX), IIAX75 (51 – 75% IIX), or IIAX100 (76 – 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev · min?1 (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.  相似文献   

19.
The purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test (VO2(peak) 71.4 +/- 3.2 ml x kg(-1) x min(-1)) and four approximately 40 min laboratory cycling time trials in a heat chamber (34.3 degrees C +/- 1.1 degrees C; 41.2% +/- 3.0% rh) using a fixed-power/variable-power format. Cyclists prepared for the time trial using three techniques administered in a randomised order prior to the warm-up: (1) no cooling (control), (2) cooling jacket for 40 min (jacket) or (3) 30-min water immersion followed by a cooling jacket application for 40 min (combined). Rectal temperature prior to the time trial was 37.8 degrees C +/- 0.1 degrees C in control, similar in jacket (37.8 degrees C +/- 0.3 degrees C) and lower in combined (37.1 degrees C +/- 0.2 degrees C, P < 0.01). Compared with the control trial, time trial performance was not different for jacket precooling (-16 +/- 36 s, -0.7%; P = 0.35) but was faster for combined precooling (-42 +/- 25 s, - .8%; P = 0.009). In conclusion, a practical combined precooling strategy that involves immersion in cool water followed by the use of a cooling jacket can produce decrease in rectal temperature that persist throughout a warm-up and improve laboratory cycling time trial performance in warm conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号