首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents an explicit two-step calibration procedure for tuned inerter based vibration absorbers on flexible structures. It makes use of a local approximate representation of the structural response to the device force, in which the contribution of the non-resonant modes is represented approximately around the resonance frequency by a background flexibility and a background inertia term. The calibration procedure then consists of two steps. The first step calibrates an equivalent vibration absorber including the background terms, and the second step subsequently evaluates the parameters of the actual device by extracting the background flexibility and inertia parameters. The first step represents the classic idealized single degree of freedom representation of the structure, whereas the second step leads to an increase of stiffness, inertia and damping parameters of the actual device due to background flexibility of the structure. The procedure is illustrated in detail for three inerter based vibration absorbers: parallel coupling of damper and stiffness, parallel coupling of damper and inerter, and finally a device with two dampers in parallel with stiffness and inerter elements, respectively. Explicit expressions for the calibration are obtained for each device, and it is demonstrated that the procedure leads to a balanced plateau of amplification around the resonance frequency of the magnitude assumed as the basis for the device parameter calibration.  相似文献   

2.
This paper investigates the benefits of the inerter in improving vibration suppression of milling machine tools. The traditional method for repressing the cutting vibration of milling machines includes applying passive mechanical networks that consist of masses, dampers, and springs. However, because the mass element is not a genuine two-terminal network element, the achievable performance of the passive mechanical networks might be restricted. The inerter was invented to substitute the mass element and has been successfully applied to many mechanical systems, such as vehicles and buildings. This paper extends the application of the inerter to a milling machine and discusses the resulting vibration suppression improvements. We first built a model of the milling machine via experiments, followed by applying three basic suspension layouts to the model and illustrating how the inerter can help reduce system vibration. Lastly, we conducted experiments to verify the effectiveness of the inerter in improving the manufacturing performance of the milling machine.  相似文献   

3.
Vibration suppression capabilities of linear passive vibration absorbers, such as traditional tuned mass damper (TMD), and recently proposed inerter-based vibration absorbers, have been studied for multiple mechanical systems. In particular, significant performance advantages have been obtained with a specific device making use of both inerter and mass elements, namely the tuned mass damper inerter (TMDI). However, there are still countless mass-included inerter-based configurations that have not been studied, which can potentially provide more preferred dynamic properties. In this paper, an immittance-function-layout (IFL) is introduced, which can cover a large range of topological connection possibilities with both mass and inerter elements. With the recently proposed structural immittance format, a systematic approach is established to identify the most beneficial IFL type mass-included inerter-based configurations with pre-determined number of each element type. Vibration suppression performance with single-IFL type device and two parallel-connected IFLs (i.e. dual-IFL) type devices are investigated in this paper. Three optimal configurations are identified for mitigating the maximum inter-storey drift of an example 3-storey building model subjected to base excitation. With this 3-storey building model, results show that, for the optimum single-IFL configuration, the performance improvement is 7.3% compared with the optimum TMDI, and with identified beneficial dual-IFL configurations, up to 34.9% performance advantages are obtained. Furthermore, consistent performance gains are shown under real-life earthquake inputs and with a 10-storey building model using identified absorber configurations.  相似文献   

4.
The inerter has garnered much attention in the past two decades owing to its unique mechanical characteristics. As a substitution of the capacitance element based on the electrical-mechanical analogy, the inerter has outstanding advantages. Extensive investigations have been conducted for the development of inerter-based vibration isolation system. This paper provides a retrospective perspective and an update on the inerter's progress for vibration isolation in different fields. The advantages of inerter compared with mass element are analyzed and revealed. Some existing reviews and highly-cited papers are summarized to outline the inerter development progress. Thereafter, the inerter is reviewed in detail from the perspective of network analogy and synthesis, mechanical domain, and power flow transmission. The devices improvement and control approach are summarized. Finally, the significance of inerter research, the challenge in current studies, and promising inerter application fields are presented and discussed. This paper is closed by conclusions, which highlight the necessity of inerter research, current challenges, and future research directions.  相似文献   

5.
This paper proposes a fuzzy non-fragile finite frequency H control algorithm for the active suspension system (ASS) of the electric vehicles driven by in-wheel motors with an advanced dynamic vibration absorber (DVA). Firstly, an interval type-2 Takagi-Sugeno (T-S) fuzzy model is established to formulate the nonlinear time-delay ASS with the uncertainties of sprung mass, unsprung mass, suspension stiffness, and tire stiffness. Secondly, a differential evolution (DE) algorithm is adopted to optimize the parameters of vehicle suspension and DVA. Thirdly, a non-fragile finite frequency H control controller is developed under the consideration of controller perturbation and input delay to improve the comprehensive performance of the chassis under the finite frequency external disturbances. Finally, simulation tests are carried out to verify the effectiveness of the proposed controller.  相似文献   

6.
7.
This paper is concerned with the problem of robust fault-tolerant H dynamic output feedback control for fractional-order linear uncertain systems with the order satisfying 0 < α < 1 in the presence of actuator faults. A new linear matrix inequality (LMI) formulation corresponding to the H norm of fractional-order linear systems is proposed. Based on the new formulation and by introducing a new linearizing change of variables, sufficient conditions for robust fault-tolerant H dynamic output feedback controller designs are derived in term of LMIs. Furthermore, the proposed controller not only enables the system to keep robust stabilization, but also achieves a better H performance compared with the existing methods. Numerical examples are given to illustrate the design procedure and its effectiveness.  相似文献   

8.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

9.
The problem of event-based H filtering for discrete-time Markov jump system with network-induced delay is investigated in this paper. For different jumping modes, different event-triggered communication schemes are constructed to choose which output signals should be transmitted. Through the analysis of network-induced delay’s intervals, the discrete-time system, the event-triggered scheme and network-induced delay are unified into a discrete-time Markov jump filter error system with time-delay. Based on time-delay system analysis method, criteria are derived to guarantee the discrete-time Markov jump error system stochastically stable with an H norm bound. The correspondent filter and the event-based parameters are also given. A numerical example is given to show that the proposed filter design techniques are effective and event-triggered communication scheme can save limited network resources greatly.  相似文献   

10.
This paper is concerned with the strong γc-γcl H stabilization problem for networked control systems (NCSs) subject to denial of service (DoS) attacks, which are common attack behaviors that affect the packet transmission of measurement or control signals. The purpose of the problem under consideration is to design a stable dynamic output feedback (DOF) controller (strong stabilizing controller) with the prescribed H performance norm bound γc to tolerate multiple packet dropouts caused by DoS attacks, such that, the closed-loop system is mean-square stable and captures the H disturbance attenuation norm bound γcl. Based on the Lyapunov functional and the stochastic control approach, some sufficient conditions with the form of matrix inequalities for the existence of the desired stable DOF controller are established. Then, by an orthogonal complement space technique, the controller gain is parameterized. Next, an iterative linear matrix inequality (LMI) algorithm is developed to obtain the controller gain. Finally, the usefulness of the proposed method is indicated by a numerical simulation example.  相似文献   

11.
This study introduces a novel particle inerter system (PIS) designed for vibration mitigation of structures. The new system comprises an inerter subsystem, a spring, and a tuned particle element, where the spring is used for tuning the particle element and the inerter subsystem is set for energy absorption and dissipation. The structural performance and the vibration mitigation effect of the PIS are assessed in terms of displacement and acceleration responses. An optimal design method is developed for a PIS under a performance-oriented design framework. Following the criterion of lightweight control, the added mass of the PIS is minimized under the constraints of target displacement and acceleration responses. A parametric analysis is performed and the robustness of the PIS for seismic response mitigation is verified. Design cases are carried out for the illustration of the proposed design method. The results show that the structural displacement and acceleration responses can be reduced significantly with the help of a PIS. Compared with the particle tuned mass damper with the same parameters, both the energy absorption and dissipation effects of the PIS are increased and the relative displacement response of the container in the PIS is reduced by the inerter subsystem. Under the same performance target, the required physical mass of the container and particles in the PIS is minimized and is significantly smaller than that of the conventional particle tuned mass damper.  相似文献   

12.
This work studies the advantageous features of the fluid inerter device for optimised structural control of buildings. Experimental data are first presented to characterise the fluid inerter dynamics, and validate the simplified analytical formulations. Building on these observations, the device is modelled as an inerter in parallel with a nonlinear dashpot representing a power law damping term. The latter dissipative effects are mainly induced by the pressure drops occurring in helical channels due to the fluid viscosity and density. Then, novel passive vibration control schemes are implemented for the earthquake protection of base-isolated buildings by combining the fluid inerter with a tuned mass damper system. To account for the uncertain nature of the earthquake input, the base acceleration is modelled as a Kanai–Tajimi filtered stationary random process. The optimal fluid inerter parameters, namely inertance and damping, are identified numerically by minimising stochastic performance indices relevant to displacement, acceleration, and energy-based measures of the structural response. The nonlinear damping behaviour of the fluid inerter is fully incorporated in the optimal design procedure via the statistical linearisation technique. Nonlinear response history analysis under an ensemble of 44 natural earthquake ground motions is carried out to assess the seismic performance of the system. Since inertance and damping are coupled characteristics in a real fluid inerter, design guidelines are finally outlined to determine the actual geometrical and mechanical properties of the device to achieve targeted parameters resulting from the optimisation procedure.  相似文献   

13.
Recently, a lot of attention has been given to a mechanical device known as the inerter. It is a mechanical component that can be compared to a capacitor with two ungrounded terminals in the mechanical-electrical systems analogy. In this paper, it is shown that although the concept of an inerter as a separate mechanical element is relatively new, there are several well-established vibration isolation systems that exhibit similar behavior to a simple lumped parameter system containing an inerter. Through a review of the literature, a link is established between the old and new ideas. Furthermore, a comparison between the systems is carried out using the quantities of mechanical impedance and displacement transmissibility. The advantages and disadvantages of using the inerter in vibration isolation are discussed, and a simple way of improving the high-frequency performance without severely degrading the low-frequency performance is described.  相似文献   

14.
This paper is concerned with reliable H?control for saturated linear Markov jump systems with uncertain transition rates and asynchronous jumped actuator failure. The actuator failures are assumed to occur randomly under the Markov process with a different jumping mode from the system jumping mode. In considering the mixed-mode-dependent state feedback controller, both H stochastic stability analysis for closed-loop system with completely accessible transition rates and uncertain transition rates are investigated. Moreover, based on the obtained stability conditions, the H?control problems are investigated, and the controller gains can be obtained by solving a convex optimization problem with minimizing H performance as objective and linear matrix inequalities (LMIs) as constraints. The problem of designing state feedback controllers such that the estimate of the domain of attraction is enlarged is also formulated and solved as an optimization problem with LMI constraints. Simulation results are presented to illustrate the effectiveness of the proposed results.  相似文献   

15.
In this paper, we investigate the incremental H performance problem for a class of stochastic switched nonlinear systems by using a state-dependent switching law and the maximum and minimum dwell time approach. By resorting to the state-dependent switching law, some sufficient conditions are provided to cope with the incremental H performance problem, which can be applied even if all subsystems are unstable. Then, based on the maximum and minimum dwell time scheme, the incremental H performance problem to be solvable is derived for two cases: one is all subsystems are incrementally globally asymptotically stable in the mean(IGASiM), another is both IGASiM subsystems and unstable subsystems coexist. When all subsystems are IGASiM, the stochastic switched nonlinear system is IGASiM and possesses a incremental L2-gain under given conditions. When both IGASiM subsystems and unstable subsystems coexist, if the activation time ratio between IGASiM subsystems and unstable ones is not less than a specified constant, the sufficient conditions for the incremental H performance of the stochastic switched nonlinear system are given. Two numerical examples are given to illustrate the validity of methods proposed.  相似文献   

16.
In this paper, a novel semi-active variable admittance (VA) concept is proposed, and a seat suspension prototype with a magnetorheological fluid damper based rotary VA device is designed, manufactured, and experimentally validated. The conventional inerter with a single flywheel has a constant inertance, which can effectively improve the suspension performance by being integrated into a mechanical network with springs and dampers. The proposed rotary VA device comprises a gear reducer, two flywheels and a variable damping (VD) device which is used to connect the two flywheels. With carefully designing, the rotary VA device is compacted and is similar with a VD device in size. The rotary VA device is installed in the centre of a seat suspension's scissors structure to form a VA seat suspension. According to the test results, the equivalent inertance of the seat suspension can vary from 11.3 Kg–76.6 Kg with a 3 Hz frequency and 5 mm amplitude sinusoidal movement by changing the current from 0 A–1 A. By analysing the system characteristics, a hybrid controller with two acceleration feedbacks is proposed. Thereafter, the seat suspension and controller are validated in experiments by comparing the performance with a conventional passive seat suspension. The random vibration test shows the excellent performance of the proposed seat suspension; the frequency weighted root mean square acceleration of the seat is reduced by 43.6%, which indicates a great improvement of the ride comfort. The VA device shows great prospect in the suspension application.  相似文献   

17.
This paper is concerned with the observer-based H finite-time control problem for linear parameter-varying (LPV) systems with parameter-varying time delays and external disturbance. The main contribution is to design an observer-based H finite-time controller such that the resulting closed-loop system is uniformly finite-time bounded and satisfies a prescribed H disturbance attenuation level in a finite-time interval. By using the delay- and parameter-dependent multiple Lyapunov–Krasovskii functional approach, sufficient criteria on uniform H finite-time stabilization via observer-based state feedback are presented for the solvability of the problem, which can be tackled by a feasibility problem in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the validity of the proposed theoretical results.  相似文献   

18.
This paper investigates the problem of robust H fixed-order filtering for a class of linear parameter-varying (LPV) switched delay systems under asynchronous switching that the system parameter matrices and the time delays are dependent on the real-time measured parameters. The so-called asynchronous switching means that there are time delays between the switching of filters and the switching of system modes. By constructing the parameter-dependent and mode-dependent Lyapunov-Krasovskii functional which is allowed to increase during the running time of active subsystem with the mismatched filter, and using the mode-dependent average dwell time (MDADT) switching method, the sufficient conditions for exponential stability and satisfying a novel weighted H criterion are derived. As there exist couplings between Lyapunov-Krasovskii functional matrices and system parameter matrices, we utilize slack matrices to decouple them. Based on the above results, a suitable weighted H fixed-order filter can be obtained in the form of the parameter linear matrix inequalities (PLMIs). By virtue of approximate basis function and gridding technique, the design of weighted H fixed-order filter can be transformed into the solution of the finite dimensional LMIs. Finally, a numerical example is presented to verify both the effectiveness and the low conservatism of the parameter-dependent and mode-dependent fixed-order filtering method proposed in this paper.  相似文献   

19.
In this work, we probes the stability results of H state estimation for discrete-time stochastic genetic regulatory networks with leakage, distributed delays, Markovian jumping parameters and impulsive effects. Here, we focus to evaluate the true absorption of mRNAs and proteins by calculating the H estimator in such a way that the estimation error dynamics is stochastically stable during the completion of the prescribed H disturbance attenuation level. In favor of decreasing the data communion in trouble, the H system accept and evaluate the outputs that are only transferred to the estimator when a certain case is acroses. Further, few sufficient conditions are formulated, by utilizing the Lyapunov–Krasovskii functional under which the estimation error system is stochastically stable and also satisfied the H attainment constraint. The estimator is obtained in terms of linear matrix inequalities (LMIs) and these LMIs are attainable, only if the estimator gains can be absolutely given. In addition to that, two numerical examples are exposed to establish the efficiency of our obtained results.  相似文献   

20.
This paper is concerned with the robust H control problem for a general class of uncertain nonlinear systems with mixed time-delays. The mixed time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is robustly stable for all admissible uncertainties with guaranteed H disturbance rejection attenuation level. By introducing a new Lyapunov–Krasovskii functional that reflects the mixed delays, sufficient conditions are established for the closed-loop system ensuring the robust stability as well as the H performance requirement. The controller design is facilitated in terms of the solvability of a Hamilton–Jacobi inequality. Two numerical examples are utilized to demonstrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号