首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, a sensorless speed control for interior permanent magnet synchronous motors (IPMSM) is designed by combining a robust backstepping controller with integral actions and an adaptive interconnected observer. The IPMSM control design generally requires rotor position measurement. Then, to eliminate this sensor, an adaptive interconnected observer is designed to estimate the rotor position and the speed. Moreover, a robust nonlinear control based on the backstepping algorithm is designed where an integral action is introduced in order to improve the robust properties of the controller. The stability of the closed-loop system with the observer–controller scheme is analyzed and sufficient conditions are given to prove the practical stability. Simulation results are shown to illustrate the performance of the proposed scheme under parametric uncertainties and low speed. Furthermore, the proposed integral backstepping control is compared with the classical backstepping controller.  相似文献   

2.
The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.  相似文献   

3.
In this paper a sliding mode position control for high-performance real-time applications of induction motors is developed. The design also incorporates a sliding mode rotor flux estimator in order to avoid the flux sensors. The proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the observer and the controller, under parameter uncertainties and load torque disturbances, is provided using the Lyapunov stability theory. Finally simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.  相似文献   

4.
This short communication is a discussion of the paper entitled “Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach” by A. Mezouar, M.K. Fellah and S. Hadjeri published in the Simulation Modelling Practice and Theory 16 (2008) 1323–1336. In the discussed paper the authors present a current and flux sliding mode observer for the induction motor that also incorporates an adaptive laws in order to estimate the rotor speed and the inverse of the rotor time constant. However the proposed design for the observer and for the adaptive laws, employs the real value of the rotor time constant and the real value of the rotor speed, which are unknown, and therefore cannot be used in the observer design nor in the adaptive laws design.  相似文献   

5.
Specific to the double saturation constraints of input and output in multimotor network systems, an anti-windup control framework with distributed total-amount optimal coordination is constructed, and a new saturated super-twisting sliding mode control strategy is designed in this paper. First, a mathematical model of direct torque and flux control of a multipermanent magnet synchronous motor is established. Next, the consistency of the total amount and output saturation are taken as the constraint conditions. Considering the lowest total energy consumption, the optimal multi-axis total-amount coordinated allocation algorithm is designed on the basis of the Karush-Kuhn-Tucker (KKT) condition. Then, the input saturation is introduced into the dynamic integral part of the super-twisting algorithm. A new saturated super-twisting sliding mode tracking control algorithm is designed, and the barrier Lyapunov function is used to prove the input constraint. Finally, the Matlab/Simulink simulation and RT-LAB semi-physical experiments verify that the anti-windup control strategy of distributed total-amount optimal coordination can effectively solve the double saturation constraints of input and output.  相似文献   

6.
This paper proposes a novel Hermite neural network-based second-order sliding-mode (HNN-SOSM) control strategy for the synchronous reluctance motor (SynRM) drive system. The proposed HNN-SOSM control strategy is a nonlinear vector control strategy consisting of the speed control loop and the current control loop. The speed control loop adopts a composite speed controller, which is composed of three components: 1) a standard super-twisting algorithm-based SOSM (STA-SOSM) controller for achieving the rotor angular speed tracking control, 2) a HNN-based disturbance estimator (HNN-DE) for compensating the lumped disturbance, which is composed of external disturbances and parametric uncertainties, and 3) an error compensator for compensating the approximation error of the HNN-DE. The learning laws for the HNN-DE and the error compensator are derived by the Lyapunov synthesis approach. In the current control loop, considering the magnetic saturation effect, two composite current controllers, each of which comprises two standard STA-SOSM controllers, are designed to make direct and quadrature axes stator current components in the rotor reference frame track their references, respectively. Comparative hardware-in-the-loop (HIL) tests between the proposed HNN-SOSM control strategy and the conventional STA-SOSM control strategy for the SynRM drive system are performed. The results of the HIL tests validate the feasibility and the superiority of the proposed HNN-SOSM control strategy.  相似文献   

7.
High performance multiphase motor drive requires precise knowledge of the state quantities and the machine parameters. Access to these state quantities is through measurement using sensors whose accuracy is paramount to achieve the performance level required by industrial applications. However, the problems of the parameters variations, inaccessibility to the measurement of some states, no-observability of the machine in some regions, the cost of the sensors and their lack of precision, make this very difficult task. To address these problems, it is necessary to resort to soft sensors through the design of observers and estimators. In multiphase induction motor drive, the observation problem arises especially for rotor flux that is not accessible for measurement. About the parameters variations, the rotor resistance and the stator resistance are the most critical parameters of the machine because their influence is crucial for the control and observation. The change in the resistances can be as large as 40–50% of the rated value, which may affect the control adversely. This paper develops a new structure of an adaptive sliding mode observer based on an online estimation of the rotor resistance value in order to avoid the effect of its variation in the rotor flux oriented control. The results show convergent (the errors in the transient and steady states are 5% and 1%, respectively) behavior of the drive using the proposed control scheme for large rotor resistance variation under loaded condition. The stability of the drive is proved using Lyapunov criteria. The simulation results are validated using real time implementation.  相似文献   

8.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

9.
In order to improve the anti-disturbance performance of a bearingless induction motor (BIM) control system, a fractional-order sliding mode control (FOSMC) strategy based on improved load torque observer is proposed on the basis of the sliding mode speed regulation system. Using the information memory and genetic characteristics of the fractional calculus operator, the fractional integral term of the speed error is introduced in the design of the traditional sliding surface, which reduces the influence of disturbance on the speed regulation system. The fractional-order sliding mode control law is derived based on the BIM mathematical model, and the stability of the control law is proved by Lyapunov theorem. An improved observer is constructed based on the BIM state equations, and the real-time observed load torque is introduced into the fractional-order sliding mode controller. To improve the observer's convergence speed, the proportional integral form is used to replace the integral form in the traditional reduced order load observer. And the state error feedback coefficients of the improved load observer are calculated. Both simulation and experimental results verified the effectiveness of the proposed control strategy.  相似文献   

10.
In this work, considering the roll dynamics and actuator dynamics, an observer-based control scheme for a vehicle is proposed. The proposal considers a nonlinear higher order sliding mode observer to estimate unmeasurable lateral velocity, roll angle and roll velocity. Using the observer information, a controller based on block control with sliding mode technique is designed for the reference trajectory tracking of the lateral and yaw velocities of the vehicle. The stability of the complete closed-loop system including zero dynamics is analyzed. The effectiveness of the proposed scheme is demonstrated through CarSim simulations.  相似文献   

11.
In order to construct the guidance strategy in a realistic nonlinear noise-corrupted interception endgame against a maneuverable target, a linearized zero-sum differential game is considered. Assuming perfect information in this game, sufficient conditions are established, which guarantee that a continuous interception strategy with memory (history-dependent) has the maximal capture zone. Two examples of such a strategy are analyzed: a modified super-twisting second-order sliding mode control and a modified integral sliding mode control. Simulation results of the original nonlinear interception endgame demonstrate that these strategies considerably reduce the chattering created by the classical game optimal bang-bang strategy without deteriorating the homing performance.  相似文献   

12.
在电压型逆变器供电的交流异步电机驱动系统中,应用模型参考自适应(MRAS)磁链观测器进行磁链观测时,常用定子电压给定值代替实际值,从而带来幅值误差和直流偏值,造成磁链观测误差,影响电机低速运行的稳定性.为了提高交流异步电机无速度传感器矢量控制的低速性能,提出了一种定子电压幅值和直流偏置补偿办法,仿真实验验证了所提出方法的有效性  相似文献   

13.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

14.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

15.
This paper presents the analysis and control of active magnetic bearing (AMB) systems with a flexible rotor. A sliding mode controller design scheme is proposed to compensate for the nonlinear effects of the AMB system. A nonlinear model of the AMB system with an electromagnetic actuator and a flexible rotor is proposed to facilitate the present system analysis and controller design. This nonlinear model takes into account the dynamics of the flexible rotor, the characteristics of the nonlinear electromagnetic suspended system, and the contact force between the auxiliary bearing and the shaft. This study also considers the auto-centering control of the AMB system when subjected to disturbances and variations in the system parameters. The numerical results show that the system exhibits a periodic motion and demonstrates high accuracy and robustness when operating under sliding mode control.  相似文献   

16.
The earlier smooth sliding control (SSC) is revisited. New global stability and chattering alleviation analysis is presented under the more general situation of simultaneous presence of plant uncertainty, unmodeled dynamics and external disturbance. Based on an appropriate prediction error loop, it delivers a smooth filtered control signal to the plant. New explicit conditions are presented for SSC to eliminate chattering. Considering numerical examples recently used in a lively debate between continuous and discontinuous sliding mode control options, the SSC is shown to overcome chattering arising in both classical first-order sliding mode (FOSM) control and the super-twisting algorithm (STA) in the presence of unmodeled dynamics. Besides the original theoretical contribution, one main purpose here is to stir new research about chattering avoidance in both classical and higher-order sliding mode algorithms for uncertain systems.  相似文献   

17.
In this paper, an observer-based sliding mode control (SMC) problem is investigated for a class of uncertain delta operator systems with nonlinear exogenous disturbance. A novel robust stability condition is obtained for a sliding mode dynamics by using Lyapunov theory in delta domain. Based on a designed sliding mode observer, a sliding mode controller is synthesized by employing SMC theory combined with reaching law technique. The robust asymptotical stability problem is also discussed for the closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability of sliding surfaces is also investigated in state-estimate space and estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the developed method.  相似文献   

18.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

19.
This paper deals with real-time discrete adaptive output trajectory tracking for induction motors in the presence of bounded disturbances. A recurrent high order neural network structure is used to design a nonlinear observer and based on this model, a discrete-time control law is derived, which combines discrete-time block control and sliding modes techniques. Applicability of the scheme is illustrated via experimental results in real-time for a three phase induction motor.  相似文献   

20.
This paper addresses the flow control design of a connection-oriented communication network from the robust control theory perspective. Network is modelled as a nth order discrete system whose first order model is obtained using the two-time scale property associated with the process. The proposed scheme is characterised by an equivalent control based discrete sliding mode design for the first order model which is applied to nth order systems through aggregation. Besides its design simplicity, the proposed method exhibits finite time convergence property for the states while applied to the full order system emulating the characteristics of terminal sliding mode in a certain way. Simulation results via Matlab and ns-2 validate the efficacy of the proposed algorithm as an effective flow controller for connection-oriented networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号