首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper investigates the problem of HH filtering for Markovian jump linear systems with time-varying delay. The aim of this problem is to design an HH filter that ensures stochastic stability of the filtering error system and a prescribed L2-induced gain from the noise signals to the estimation error, for all admissible uncertainties. For solving the problem, we transform the system under consideration into an interconnection system. Based on the system transformation and the stochastic scaled small gain theorem, stochastic stability of the original system is examined via the stochastic stability version of the bounded realness of the transformed forward system. The merit of the proposed approach lies in its reduced conservatism, which is made possible by a precise approximation of the time-varying delay and the stochastic scaled small gain theorem. The proposed HH filtering condition is demonstrated to be less conservative than most existing results. Moreover, the HH filter design condition is further presented via convex optimizations, whose effectiveness are also illustrated via numerical examples.  相似文献   

2.
3.
This paper considers the problems of robust stochastic stabilization and robust H controller design for a class of stochastic Markovain jumping systems with mixed time delays and polytopic parameter uncertainties. Both the interval time-varying delay and distributed time delay are simultaneously considered. Some new delay-dependent sufficient conditions, which differs greatly from the most existing results, are obtained based on the decoupling method and some advanced techniques. A numerical example is provided to illustrate the effectiveness of the proposed criteria.  相似文献   

4.
This paper proposes a class of H filter design for continue-time systems with time-varying delay. Firstly, by exploiting a new Lyapunov function and using the convexity property of the matrix inequality, some delay-dependent stability conditions can be obtained for the asymptotical stability of the filtering-error system, which can lead to much less conservative analysis results. Secondly, based on the obtained conditions, the filter parameter matrixes can be obtained in terms of linear matrix inequalities (LMIs). Finally, two examples are given to demonstrate the effectiveness and the merit of the proposed method.  相似文献   

5.
6.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

7.
8.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

9.
This paper presents an optimal solution to asteroid soft landing problem, on the base of θ?D control technique and disturbance rejection mechanism. The control objective is to drive a probe to reach the surface of an asteroid with a desirable line-of-sight angle and zero velocity, eliminating the influence of external disturbance. Firstly, elementary θ?D technique is applied in the absence of disturbance to tackle the nonlinear optimal control problem. Secondly, the disturbance is estimated in the fast-estimation framework with explicitly bounded estimation error. Afterwards, an integrated control protocol is presented in a feed-forward structure by the aid of an additional variable-structure term to ensure stability under time-varying disturbance. Simulation results of the proposed approach compared with the results of elementary θ?D method and robust θ?D method are presented at the end of this paper, demonstrating the effectiveness of the proposed control protocol.  相似文献   

10.
11.
This paper is concerned with the problem of designing an observer-based quantized feedback controller for the continuous-time switched linear systems, in which the transmission of switching signal is subject to unbounded delays and packet loss. To deal with the unbounded switching delays, we design a constant d¯ to determine that the switching signal received by controller is ignored or not. Based on that, if the signal is timestamped, the controller’s mode is uniquely determined. Moreover, we adjust the quantizer parameters in real time depending on the actual transmission situations to ensure the unsaturation of quantizer and thus the boundness of quantization error. Within this setup, we derive a maximum allowable packet loss rate ensuring the mean square stability of the closed-loop switched systems. An illustrative example is given to show the usefulness of the proposed framework for the quantized stabilization of some classes of switched systems.  相似文献   

12.
13.
14.
15.
16.
17.
This paper investigates the standard H performance for a class of switched linear systems with time-varying delay in the framework of the delay-dependent/delay-independent minimum dwell time. For the studied systems, we first construct two types of multiple time-varying Lyapunov functionals, and then obtain the sufficient conditions by restricting the decay of the Lyapunov functional of the active subsystem and forcing “energy” of the overall switched system to decrease at switching instants by the proposed Lyapunov functionals to guarantee standard L2-gain performance meanwhile ensuring their internal stability with minimum dwell time switching. Finally, two examples are presented to illustrate the effectiveness of the proposed results.  相似文献   

18.
19.
Dynamical systems in the real world are always subject to various disturbances. This paper studies the dynamics of linear delayed systems with decaying disturbances, both discrete- and continuous-time cases are considered. It is first shown that if an unforced linear system is exponentially stable, then the disturbed system has a dynamical property like exponential stability provided that the disturbance decays at an exponential rate, and has a dynamical property like asymptotic stability provided that the disturbance asymptotically approaches zero. These results are then applied to block triangular systems in the presence of time-varying delays, leading to criteria for checking the stability properties of this class of systems by considering diagonal blocks of system matrices. Particularly, a block triangular system is exponentially stable if and only if each system described by the diagonal blocks of system matrices is exponentially stable. Finally, a numerical example is presented to illustrate the theoretical results.  相似文献   

20.
This paper gives some Razumikhin-type theorems on pth moment boundedness of stochastic functional differential equations with Markovian switching (SFDEwMS) by using Razumikhin technique and comparison principle. Some improved conditions on pth moment stability are also proposed. The main results of this paper allow the estimated upper bound of the diffusion operator associated with the underlying SFDEwMS of the Lyapunov function to have time-varying coefficients (the coefficients may even be sign-changing functions). Examples are provided to illustrate the effectiveness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号