首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
Ultrasonography is a noninvasive imaging modality, and modern ultrasound machines are portable, inexpensive (relative to other imaging modalities), and user friendly. The aim of this study was to explore student perceptions of the use of ultrasound to teach “living anatomy”. A module utilizing transthoracic echocardiography was developed and presented to undergraduate medical, science, and dental students at a time they were learning cardiac anatomy as part of their curriculum. Relevant cardiac anatomy was explored on a student volunteer and images were projected in real‐time to all students via an AV projection system. Students were asked to complete a questionnaire about the learning experience and were given the opportunity to provide open feedback. The students' evaluations of this learning experience were very positive. They agreed or strongly agreed that it was an effective way to teach anatomy (90% medical; 77% dental; 100% science) and that it was incorporated in a way that promoted reinforcement of the lecture material (83% medical; 76% dental; 100% science). They agreed or strongly agreed with statements that the experience was innovative (93% medical; 92% dental; 100% science) and stimulated interest in the subject matter (86% medical; 75% dental; 96% science), and that they would like to see more modules, exploring other anatomical sites, incorporated into the curricula (83% medical; 72% dental; 100% science). We believe that ultrasound could be a useful tool, in conjunction with traditional teaching methods, to reinforce the learning of anatomy of a variety of different undergraduate student groups. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

2.
Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second‐year students participating in a clinical anatomy course over three consecutive academic years. A principal component analysis was used to evaluate the dimensionality of the questionnaire. The variables were summarized using frequencies, mean, median, 25th percentile, 75th percentile, minimum, and maximum. The results demonstrated that students felt the teaching of imaging anatomy influenced learning in the clinical anatomy course (mean = 4.5, median = 5.0) and subsequent clinical courses (mean = 4.4, median = 4.0). Regarding the imaging techniques used in the demonstration of anatomical structures, computed tomography (median = 5.0) and magnetic resonance imaging (median = 5.0) were highly rated. Students suggested the use of additional support material (37.6%) and favored a more practical approach. In conclusion, the results of this work highlight the value of imaging anatomy in learning human anatomy. Students' comments pointed out a need to focus teaching/learning programs toward a more practical rather than theoretical approach as well as a need to provide a better fit between sectional anatomy and clinical cases using imaging anatomy. In order to provide an optimal learning environment to students, it also seems important to create improved media material as an additional resource tool. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

3.
Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third‐year medical students completed a 20–25‐question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first‐year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. Anat Sci Educ 7: 461–468. © 2014 American Association of Anatomists.  相似文献   

4.
Historical loss of staff and teaching resources in Cambodia has resulted in significant challenges to anatomy education. Small group anatomy teaching opportunities are limited. A visit to Cambodia by a teaching team from the University of Melbourne in 2010 demonstrated it was possible to implement well-resourced anatomy workshops for this purpose. However, continuation of the workshop program was inhibited by the limited number of local teaching staff. In 2015, another team from the University of Melbourne returned to Cambodia to implement anatomy workshops that incorporated peer tutoring. The objective was to improve teacher-to-student ratios and to demonstrate that interactive anatomy workshops could be delivered successfully despite low staff numbers. The anatomy workshops were attended by 404 students of Medicine, Dentistry, Nursing, and Midwifery at the University of Puthisastra. Medical students were invited to act as peer tutors for nursing students. A five-point Likert scale questionnaire was used to determine student satisfaction with both the workshops and peer tutoring. The overwhelming majority were positive about the workshops and keen for them to continue. Almost all medical students who acted as peer tutors agreed or strongly agreed that this role increased their anatomical knowledge (98%) and confidence (94%). Most nursing students agreed or strongly agreed with statements that they would like peer tutoring to continue (94%) and that they would like to be peer tutors themselves (88%). This report demonstrates that peer tutoring could be an effective tool in educational settings where poor staff-to-student ratios limit delivery of interactive workshops.  相似文献   

5.
Authors report here a survey of medical student feedback on the effectiveness of two different anatomy curricula at Christian Medical College, Vellore, India. Undergraduate medical students seeking the Bachelor in Medicine and Bachelor in Surgery (M.B.B.S.) degrees were divided into two groups by the duration of their respective anatomy curriculum. Group 1 students had completed a longer, 18‐month curriculum whereas Group 2 counterparts followed a shorter, 12‐month curriculum. Students' responses to a questionnaire were studied. Analysis of feedback from Groups 1 and 2 contrasted the effectiveness of the two anatomy curricula. The coverage of gross anatomy was rated adequate or more than adequate by 98% of Group 1 and 91% of Group 2. A desire for greater emphasis on gross anatomy teaching was expressed by 24% of Group 1 and 50% of Group 2 (P = 0.000). Two‐thirds of all students felt that the one‐year program was not adequate, and 90% of Group 1 and 74% of Group 2 felt that clinically oriented anatomy teaching required more emphasis. Dissection was helpful or very helpful for 94% of Group 1 and 88% of Group 2. This study suggests that a better understanding of gross anatomy was gained from a course of longer duration (18 months with 915 contact hr vs. 12 months with 671 contact hr). Students who completed the longer anatomy course had greater appreciation of the need for clinically oriented anatomy teaching and dissection. Anat Sci Educ 2:179–183, 2009. © 2009 American Association of Anatomists.  相似文献   

6.
The complexity of the material being taught in clinical neuroscience within the medical school curriculum requires creative pedagogies to teach medical students effectively. Many clinical teaching strategies have been developed and are well described to address these challenges. However, only a few have been evaluated to determine their impact on the performance of students studying clinical neuroscience. Interactive, 2‐hour, self‐directed small‐group interactive clinical case‐based learning sessions were conducted weekly for 4 weeks to integrate concepts learned in the corresponding didactic lectures. Students in the small groups analyzed cases of patients suffering from neurological disease that were based on eight learning objectives that allowed them to evaluate neuroanatomical data and clinical findings before presenting their case analysis to the larger group. Students’ performances on the formative quizzes and summative tests were compared to those of first‐year medical students in the previous year for whom the self‐directed, small‐group interactive clinical sessions were not available. There was a significant improvement in the summative performance of first‐year medical students with self‐directed clinical case learning in the second year (Y2) of teaching clinical neuroscience (P < 0.05) when compared with first‐year students in the first year (Y1) for whom the self‐directed learning approach was not available. Student performance in the formative assessments between Y1 and Y2 was not significantly different (P = 0.803). A target of ≥70% student scoring above 80% in the final summative examination was met. The current study revealed evidence for the impact and educational outcomes of a self‐directed, clinical teaching strategy in a clinical neuroscience curriculum for first‐year medical students. Anat Sci Educ 11: 478–487. © 2017 American Association of Anatomists.  相似文献   

7.
There is growing demand from accrediting agencies for improved basic science integration into fourth-year medical curricula and inculcation of medical students with teaching skills. The objective of this study was to determine the effectiveness of a fourth-year medical school elective course focused on teaching gross anatomy on anatomical knowledge and teaching confidence. Fourth-year medical student “teacher” participants' gross anatomy knowledge was assessed before and after the course. Students rated their overall perceived anatomy knowledge and teaching skills on a scale from 0 (worst) to 10 (best), and responded to specific knowledge and teaching confidence items using a similar scale. First-year students were surveyed to evaluate the effectiveness of the fourth-year student teaching on their learning. Thirty-two students completed the course. The mean anatomy knowledge pretest score and posttest scores were 43.2 (±22.1) and 74.1 (±18.4), respectively (P < 0.001). The mean perceived anatomy knowledge ratings before and after the course were 6.19 (±1.84) and 7.84 (±1.30), respectively (P < 0.0001) and mean perceived teaching skills ratings before and after the course were 7.94 (±1.24) and 8.53 (±0.95), respectively (P = 0.002). Student feedback highlighted five themes which impacted fourth-year teaching assistant effectiveness, including social/cognitive congruence and improved access to learning opportunities. Together these results suggest that integrating fourth-year medical students in anatomy teaching increases their anatomical knowledge and improves measures of perceived confidence in both teaching and anatomy knowledge. The thematic analysis revealed that this initiative has positive benefits for first-year students.  相似文献   

8.
Recently, faculty at Pritzker School of Medicine, The University of Chicago, have made efforts to improve the depth of radiological anatomy knowledge that students have, but no insights exist as to student and resident opinions of how clinically helpful deep anatomical understanding is. A single‐institution survey of second‐ and fourth‐year medical students and postgraduate year 1–4 residents from 11 specialties, composed of five‐point Likert questions, sample examination questions, and narrative response questions, was distributed in 2015. One hundred seventy‐seven of the 466 potential respondents replied (71 residents and 106 students), response rate 38.0%. No nonresponse bias was present in two separate analyses. Respondents generally favored a superficial “identification” question as more relevant to clinical practice, which was positively associated with increasing clinical experience ρ = 0.357, P < 0.001 by point‐biserial correlation. Students and residents most commonly used self‐directed methods to learn medical imaging during their medical anatomy courses (72.6 and 57.7%, respectively). Small group education was least commonly used by students and residents (45.3 and 39.4%, respectively), but most commonly recommended (62.3 and 69%, respectively). A total of 56.6 and 64.8% of students and residents, respectively, reported that having multiple learning methods was “quite” or “extremely” important. Respondents with more clinical experience were more likely to report that a superficial identification question was more clinically relevant than a question testing deeper radiological anatomy knowledge. Small group learning was preferred among students and residents but was the least commonly employed method of instruction. Both findings contrast starkly with current radiological anatomy instructional understanding and practices. Anat Sci Educ 11: 25–31. © 2017 American Association of Anatomists.  相似文献   

9.
Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point‐of‐care imaging in the future. To investigate whether using short sessions of in vivo imaging using ultrasonography could benefit students' anatomical knowledge and clinical application, we conducted a 2‐hour session on abdominal anatomy using ultrasonography in small groups of five to six students, for both first‐ and second‐year student cohorts. Individual feedback was collected to assess student perceptions. To measure retention and understanding, a short examination containing ultrasound images and questions and performance of a clinical skill (gastrointestinal' tract examination) were assessed. Ultrasonography sessions were highly valued by the students, with 90% of the students reporting their understanding was improved, and over 70% reporting increased confidence in their anatomical knowledge. However, the assessments showed no appreciable impact on skills or understanding related to abdominal anatomy and examination. We conclude that the risk associated with limited exposure increasing confidence without increasing skills remains real and that in vivo imaging is not effective when used as a short adjunct teaching tool. The widespread use of ultrasonography means finding the best way to incorporate ultrasound into medical education remains important. To this end, we are currently implementing an extended program including echocardiography and multiple anatomical sessions that will determine if frequency and repetition of use can positively impact on student performance and understanding. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

10.
Tuebingen's Sectio Chirurgica (TSC) is an innovative, interactive, multimedia, and transdisciplinary teaching method designed to complement dissection courses. The Tuebingen's Sectio Chirurgica (TSC) allows clinical anatomy to be taught via interactive live stream surgeries moderated by an anatomist. This method aims to provide an application‐oriented approach to teaching anatomy that offers students a deeper learning experience. A cohort study was devised to determine whether students who participated in the TSC were better able to solve clinical application questions than students who did not participate. A total of 365 students participated in the dissection course during the winter term of the 2012/2013 academic year. The final examination contained 40 standard multiple‐choice (S‐MC) and 20 clinically‐applied multiple‐choice (CA‐MC) items. The CA‐MC items referred to clinical cases but could be answered solely using anatomical knowledge. Students who regularly participated in the TSC answered the CA‐MC questions significantly better than the control group (75% and 65%, respectively; P < 0.05, Mann‐Whitney U test). The groups exhibited no differences on the S‐MC questions (85% and 82.5%, respectively; P > 0.05). The CA‐MC questions had a slightly higher level of difficulty than the S‐MC questions (0.725 and 0.801, respectively; P = 0.083). The discriminatory power of the items was comparable (S‐MC median Pearson correlations: 0.321; CA‐MC: 0.283). The TSC successfully teaches the clinical application of anatomical knowledge. Students who attended the TSC in addition to the dissection course were able to answer CA‐MC questions significantly better than students who did not attend the TSC. Thus, attending the TSC in addition to the dissection course supported students' clinical learning goals. Anat Sci Educ 10: 46–52. © 2016 American Association of Anatomists.  相似文献   

11.
The Radboud University Medical Center has a problem‐based, learner‐oriented, horizontally, and vertically integrated medical curriculum. Anatomists and clinicians have noticed students’ decreasing anatomical knowledge and the disability to apply knowledge in diagnostic reasoning and problem solving. In a longitudinal cohort, the retention of anatomical knowledge gained during the first year of medical school among second‐year medical students was assessed. In May 2011, 346 medical students applied for the second‐year gastro‐intestinal (GI) tract course. The students were asked to participate in a reexamination of a selection of anatomical questions of an examination from October 2009. The examination consisted of a clinical anatomy case scenario and two computed tomography (CT) images of thorax and abdomen in an extended matching format. A total of 165 students were included for analysis. In 2011, students scored significantly lower for the anatomy examination compared to 2009 with a decline in overall examination score of 14.7% (±11.7%). Decrease in knowledge was higher in the radiological questions, compared to the clinical anatomy cases 17.5% (±13.6%) vs. 7.9% (±10.0%), respectively, d = 5.17. In both years, male students scored slightly better compared to female students, and decline of knowledge seems somewhat lower in male students (13.1% (±11.1%) vs. 15.5% (±12.0%), respectively), d = ?0.21. Anatomical knowledge in the problem‐oriented horizontal and vertical integrated medical curriculum, declined by approximately 15% 1.5 year after the initial anatomy course. The loss of knowledge in the present study is relative small compared to previous studies. Anat Sci Educ 10: 242–248. © 2016 American Association of Anatomists.  相似文献   

12.
Dissection has long been the accepted method for teaching anatomy to medical students. More recently, some educators have suggested that easier, cheaper, alternative methods are just as effective. But what do the students think? This paper aimed to identify what undergraduate medical students learn, how they cope, and what effects participating in dissection has on them as individuals. A cohort of 267 second year medical students at Otago Medical School were invited to complete three online surveys; before their first dissection laboratory class, after their first musculoskeletal system dissection and following the last semester of studying anatomy. Open‐ended questions showcasing the attitudes, beliefs, and opinions on what dissection had taught the medical students over years two and three were analyzed. A general inductive approach was used and common emergent themes were identified. In total, 194 students completed the second, and 108 students completed the third questionnaire. Students commonly conveyed dissection as an appropriate and valuable educational tool, useful for teaching and learning anatomical knowledge and relationships, appreciating the body in three‐dimension, teamwork, and how to cope with death/dead bodies. The noted effects of personal growth while participating in dissection were highly varied, but in general, impacted positively on the majority of students. This study shows that at Otago Medical School the students also believe that dissection is not only a useful tool to learn anatomy but also that it fosters teamwork, assists professional development and helps them come to terms with death and dying. Anat Sci Educ 11: 325–335. © 2017 American Association of Anatomists.  相似文献   

13.
Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with performance in the gross anatomy course and (2) dissection of the CT‐scanned cadaver is positively associated with performance on this course. One hundred and seventy‐nine first‐year medical students enrolled in gross anatomy at Boston University School of Medicine were provided with CT scans of four cadavers, and students were given the opportunity to choose whether or not to use these images. The hypotheses were tested using logistic regression analysis adjusting for student demographic characteristics. Students who used the CT scans were more likely to score greater than 90% as an average practical examination score (odds ratio OR 3.6; 95% CI 1.4, 9.2), final course grade (OR 2.6; 95% CI 1.01, 6.8), and on spatial anatomy examination questions (OR 2.4; 95% CI 1.03, 5.6) than were students who did not use the CT scans. There were no differences in performance between students who dissected the scanned cadavers and those who dissected a different cadaver. These results demonstrate that the use of CT scans in medical gross anatomy is predictive of performance in the course and on questions requiring knowledge of anatomical spatial relationships, but it is not necessary to scan the actual cadaver dissected by each student. Anat Sci Educ 3: 56–63, 2010. © 2010 American Association of Anatomists.  相似文献   

14.
The utility of three-dimensional (3D) printed models for medical education in complex congenital heart disease (CHD) is sparse and limited. The purpose of this study was to evaluate the utility of 3D printed models for medical education in criss-cross hearts covering a wide range of participants with different levels of knowledge and experience, from medical students, clinical fellows up to senior medical personnel. Study participants were enrolled from four dedicated imaging workshops developed between 2016 and 2019. The study design was a non-randomized cross-over study to evaluate 127 participants' level of understanding of the criss-cross heart anatomy. This was evaluated using the scores obtained following teaching with conventional images (echocardiography and magnetic resonance imaging) versus a 3D printed model learning approach. A significant improvement in anatomical knowledge of criss-cross heart anatomy was observed when comparing conventional imaging test scores to 3D printed model tests [76.9% (61.5%–87.8%) vs. 84.6% (76.9%–96.2%), P < 0.001]. The increase in the questionnaire marks was statistically significant across all academic groups (consultants in pediatric cardiology, fellows in pediatric cardiology, and medical students). Ninety-four percent (120) and 95.2% (121) of the participants agreed or strongly agreed, respectively, that 3D models helped them to better understand the medical images. Participants scored their overall satisfaction with the 3D printed models as 9.1 out of 10 points. In complex CHD such as criss-cross hearts, 3D printed replicas improve the understanding of cardiovascular anatomy. They enhanced the teaching experience especially when approaching medical students.  相似文献   

15.
Few realized the extent of disruption that the Covid-19 global pandemic would impose upon higher anatomical education. While many institutions were obliged to adopt a fully-remote online model, the New York Institute of Technology College of Osteopathic Medicine strove to develop a curriculum that would allow medical students to receive an in-person anatomy education. A hybrid model that emphasized learning from prosected cadavers and self-study stations was implemented, with the remainder of the students' time directed toward studying at home. Through an anonymous survey aimed at gleaning student satisfaction, this study demonstrates that this hybrid prosection-based anatomy course aligned with student preferences both assuming no health risk (64.6% agreed) and given the current risk of contracting Covid-19 (78.5% agreed). Generally, students felt that their education was equal to that of previous years (Likert scale = 3.24 ± 1.05), fostered an appreciation for anatomy (4.56 ± 0.59), promoted teamwork (4.13 ± 0.85), and prepared them for practical examinations (4.18 ± 0.74). Linear mixed-effect models demonstrated that specific differences in results could be attributed to students' preconceived preferences toward student-led dissections and to past medical training. Importantly, most students “disagree” (1.97 ± 1.00) that they were concerned about the risk of exposure to Covid-19 during in-person anatomy laboratory sessions. Areas requiring improvement were identified by the model, including the provision of access to the cadavers outside of the regularly scheduled laboratory times (3.89 ± 1.08). These findings should be utilized when designing future gross anatomy courses in response to the “new normal”.  相似文献   

16.
The purpose of the present pilot study was to evaluate the benefits of innovative teaching methodologies introduced to final year occupational and physical therapy students in Christian Medical College in India. Students' satisfactions along the long-term retention of knowledge and clinical application of the respiratory anatomy have been assessed. The final year undergraduate physical therapy and occupational therapy students had respiratory anatomy teaching over two sessions. The teaching involved case-based learning and integrated anatomy lectures (vertical integration) with the Anatomy department. Pretest and immediate and follow-up post-tests were conducted to assess the effectiveness of the innovative methods. A feedback questionnaire was marked to grade case-based learning. The method of integrated and case-based teaching was appreciated and found to be useful in imparting knowledge to the students. Students retained the gained knowledge adequately and the same was inferred by statistically significant improvement in both post-test scores. Vertical integration of anatomy in the final year reinforces their existing knowledge of anatomy. Case-based learning may facilitate the development of effective and clinically sound therapists.  相似文献   

17.
In the past, medical museums played a significant role in anatomy and pathology training. The attraction of medical museums has declined recently due to the emergence of information technology and innovative medical curricula. An innovative mobile learning platform has been developed using quick response (QR) codes for the museum specimens at the Lee Kong Chain School of Medicine, Singapore. High-quality images of the potted specimens were captured and combined into an album and a video using Adobe Acrobat Pro 9 and Windows Movie Maker, respectively. Subsequently, QR codes were generated linking to PDF documents with annotations, pathology, and clinical history concerning the specimens. Quick response codes were piloted in gastrointestinal teaching module for Year 2 medical students. Survey responses were obtained from students to verify the efficacy of QR as a learning tool. The majority of students either agreed or strongly agreed that it was easy to access the information about the specimen with QR codes (4.47 ± 0.84), while 96% of students agreed that they are able to correlate the specimen with the annotated images (4.56 ± 0.56). The majority of students (78%) agreed that QR codes are useful for their learning (4.22 ± 0.87), while 75% of students felt QR codes motivate them to visit Anatomy Resource Centre. Most of the students agreed that QR codes are useful for revision of materials (4.13 ± 1.07) and independent learning (4.38 ± 0.87). These findings suggest that QR codes are not only effective for students learning but also enhance their exploration experience with the museum specimens.  相似文献   

18.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

19.
Healthcare providers in all areas and levels of education depend on their knowledge of anatomy for daily practice. As educators, we are challenged with teaching the anatomical sciences in creative, integrated ways and often within a condensed time frame. This article describes the organization of a clinical anatomy course with a peer taught unembalmed (fresh-tissue) cadaver laboratory in the 2010 summer term of a new physician assistant program. To fit within the allotted 12 week time frame, students meet every Monday for both the classroom and laboratory component of the course. Students prepare for these sessions by reviewing a list of learning objectives and completing assigned textbook readings. Classroom sessions involve faculty presentations and are facilitated with the use of self-assessment questions and accompanying images. The afternoon laboratory sessions which follow the classroom sessions are comprised of four to five stations presented by first- and second-year medical students and a resident radiologist. End of course evaluations indicate that students felt that the course objectives were clear, achievable, and taught effectively with relevant clinical correlates.  相似文献   

20.
The Directed–Self Education programme (DSE) in the first year undergraduate course in veterinary anatomy seeks to support students in developing personal study and information technology skills. It also aims to move computer–assisted learning (CAL) towards offering tools for students to create a variety of computer–based materials of their own which subsequently can be repurposed by staff as teaching resources. This aspect addresses the issue that many British academics have little incentive to devote time to improving teaching through CAL methods, as innovation and excellence in teaching is not rewarded in career terms on par with excellence in research. The programme seeks to integrate a modest type of "problem–based learning" (PBL) methodology without demanding the total integration of pre–clinical with clinical teaching advocated by full–scale PBL. Since 1993 the outcomes of the programme have been that lectures in the first year veterinary anatomy course have been reduced by a third, with a slight change in the mean value of the final grades in the first year final examination in veterinary anatomy during 1994–5, as compared to the years 1991–3. Other benefits have included the rapid creation of a library of student–produced CAL which is recycled by staff into other forms of computer–based teaching. It has also led to involvement in the use of CAL by lecturers hitherto resistant to applying technology to teaching, and the vacation employment of current BVSc undergraduates from the programme in university and national projects producing CAL for medical teaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号