首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to provide a more detailed analysis of performance in cross-country skiing by combining findings from a differential global positioning system (dGPS), metabolic gas measurements, speed in different sections of a ski-course and treadmill threshold data. Ten male skiers participated in a freestyle skiing field test (5.6?km), which was performed with dGPS and metabolic gas measurements. A treadmill running threshold test was also performed and the following parameters were derived: anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio = 1, onset of blood lactate accumulation and peak oxygen uptake ([Vdot]O2peak). The combined dGPS and metabolic gas measurements made detailed analysis of performance possible. The strongest correlations between the treadmill data and final skiing field test time were for [Vdot]O2peak (l?·?min?1), respiratory exchange ratio = 1 (l?·?min?1) and onset of blood lactate accumulation (l?·?min?1) (r = ?0.644 to ??0.750). However, all treadmill test data displayed stronger associations with speed in different stretches of the course than with final time, which stresses the value of a detailed analysis of performance in cross-country skiing. Mean oxygen uptake ([Vdot]O2) in a particular stretch in relation to speed in the same stretch displayed its strongest correlation coefficients in most stretches when [Vdot]O2 was presented in units litres per minute, rather than when [Vdot]O2 was normalized to body mass (ml?·?kg?1?·?min?1 and ml?·?min?1?·?kg?2/3). This suggests that heavy cross-country skiers have an advantage over their lighter counterparts. In one steep uphill stretch, however, [Vdot]O2 (ml?·?min?1?·?kg?2/3) displayed the strongest association with speed, suggesting that in steep uphill sections light skiers could have an advantage over heavier skiers.  相似文献   

2.
The aim of this study was to determine the physiological responses to orienteering by examining the interrelationships between the information provided by a differential global positioning system (dGPS) about an orienteer's route, speed and orienteering mistakes, portable metabolic gas analyser data during orienteering and data from incremental treadmill tests. Ten male orienteers completed a treadmill threshold test and a field test; the latter was performed on a 4.3 km course on mixed terrain with nine checkpoints. The anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio, onset of blood lactate accumulation and peak oxygen uptake (VO2peak) were determined from the treadmill test. Time to complete the course, total distance covered, mean speed, distance and timing of orienteering mistakes, mean oxygen uptake, mean relative heart rate, mean respiratory exchange ratio and mean running economy were computed from the dGPS data and metabolic gas analyser data. Correlation analyses showed a relationship between a high anaerobic threshold and few orienteering mistakes (r = - 0.64, P < 0.05). A high threshold of decompensated metabolic acidosis and VO2peak were related to a fast overall time (r = -0.70 to -0.72, P < 0.05) and high running speed (r = 0.64 to 0.79, P < 0.05 and P < 0.01, respectively), and were thus the best predictors of performance.  相似文献   

3.
The aim of this study was to assess the sensitivity of the lactate minimum speed test to changes in endurance fitness resulting from a 6 week training intervention. Sixteen participants (mean +/- s: age 23+/-4 years; body mass 69.7+/-9.1 kg) completed 6 weeks of endurance training. Another eight participants (age 23+/-4 years; body mass 72.7+/-12.5 kg) acted as non-training controls. Before and after the training intervention, all participants completed: (1) a standard multi-stage treadmill test for the assessment of VO2max, running speed at the lactate threshold and running speed at a reference blood lactate concentration of 3 mmol x l(-1); and (2) the lactate minimum speed test, which involved two supramaximal exercise bouts and an 8 min walking recovery period to increase blood lactate concentration before the completion of an incremental treadmill test. Additionally, a subgroup of eight participants from the training intervention completed a series of constant-speed runs for determination of running speed at the maximal lactate steady state. The test protocols were identical before and after the 6 week intervention. The control group showed no significant changes in VO2max, running speed at the lactate threshold, running speed at a blood lactate concentration of 3 mmol x l(-1) or the lactate minimum speed. In the training group, there was a significant increase in VO2max (from 47.9+/-8.4 to 52.2+/-2.7 ml x kg(-1) x min(-1)), running speed at the maximal lactate steady state (from 13.3+/-1.7 to 13.9+/-1.6 km x h(-1)), running speed at the lactate threshold (from 11.2+/-1.8 to 11.9+/-1.8 km x h(-1)) and running speed at a blood lactate concentration of 3 mmol x l(-1) (from 12.5+/-2.2 to 13.2+/-2.1 km x h(-1)) (all P < 0.05). Despite these clear improvements in aerobic fitness, there was no significant difference in lactate minimum speed after the training intervention (from 11.0+/-0.7 to 10.9+/-1.7 km x h(-1)). The results demonstrate that the lactate minimum speed, when assessed using the same exercise protocol before and after 6 weeks of aerobic exercise training, is not sensitive to changes in endurance capacity.  相似文献   

4.
The aim of this study was to determine the physiological responses to orienteering by examining the interrelationships between the information provided by a differential global positioning system (dGPS) about an orienteer's route, speed and orienteering mistakes, portable metabolic gas analyser data during orienteering and data from incremental treadmill tests. Ten male orienteers completed a treadmill threshold test and a field test; the latter was performed on a 4.3 km course on mixed terrain with nine checkpoints. The anaerobic threshold, threshold of decompensate . dmetabolic acidosis, respiratory exchange ratio, onset of blood lactate accumulation and peak oxygen uptake (V O2peak ) were determined from the treadmill test. Time to complete the course, total distance covered, mean speed, distance and timing of orienteering mistakes, mean oxygen uptake, mean relative heart rate, mean respiratory exchange ratio and mean running economy were computed from the dGPS data and metabolic gas analyser data. Correlation analyses showed a relationship between a high anaerobic threshold a . nd few orienteering mistakes ( r = - 0.64, P ? 0.05). A high threshold of decompensated metabolic acidosis and V O2peak were related to a fast overall time ( r = - 0.70 to- 0.72, P ? 0.05) and high running speed ( r = 0.64 to 0.79, P ? 0.05 and P ? 0.01, respectively), and were thus the best predictors of performance.  相似文献   

5.
We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO2) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion, with 0, 25, 50, 75, and 100% water-jet resistance. All session treadmill velocities increased every 3 min from 53.6 to 187.8 m x min(-1). Cardiorespiratory responses were similar between LTM and UTM when jet resistance for UTM was 50%. Using multiple regression analysis, weight-relative VO2 could be estimated as: VO2 (mLO2 c kg(-1) x min(-1)) = 0.19248 x height (cm) + 0.17422 x jet resistance (% max) + 0.14092 x velocity (m x min(-1)) -0.12794 x weight (kg)-27.82849, R2 = .82. Our data indicate that similar LTM and UTM cardiorespiratory responses are achievable, and we provide a reasonable estimate of UTM VO2.  相似文献   

6.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1+/-6.7 years, VO2max 52.0+/-7.9 ml x kg(-1) x min(-1)) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a 'U-shaped' blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0+/-1.4 km x h(-1)) was significantly slower than running speed at the lactate threshold (12.4+/-1.7 km x h(-1)) (P < 0.05), but there were no significant differences in VO2, heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-to-pyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

7.
Abstract

The aim of this study was to assess fatigue during a simulated cross-country skiing sprint competition based on skating technique. Sixteen male skiers performed a 30-m maximal skiing speed test and four 850-m heats with roller skies on a tartan track, separated by 20 min recovery between heats. Physiological variables (heart rate, blood lactate concentration, oxygen consumption), skiing velocity, and electromyography (EMG) were recorded at the beginning of the heats and at the end of each 200-m lap during the heats. Maximal skiing velocity and EMG were measured in the speed test before the simulation. No differences were observed in skiing velocity, EMG or metabolic variables between the heats. The end (820–850 m) velocities and sum-iEMG of the triceps brachii and vastus lateralis in the four heats were significantly lower than the skiing velocity and sum-iEMG in the speed test. A significant correlation was observed between mean oxygen consumption and the change in skiing velocity over the four heats. Each single heat induced considerable neuromuscular fatigue, but recovery between the heats was long enough to prevent accumulation of fatigue. The results suggest that the skiers with a high aerobic power were less fatigued throughout the simulation.  相似文献   

8.
The purpose was to study the adaptation to speed in the temporal patterns of the movement cycle and determine any differences in velocity, cycle rate and cycle length at the maximum speed level in the different classical style and freestyle cross-country skiing techniques. Eight skilled male cross-country skiers were filmed with a digital video camera in the sagittal plane while skiing on a flat cross-country ski track. The skiers performed three classical style techniques the diagonal stride, kick double poling and the double poling technique and four freestyle techniques paddle dance (gear 2), double dance (gear 3), single dance (gear 4) and combiskate (gear 5) at four different self-selected speed levels slow, medium, fast and their maximum. Cycle duration, cycle rate, cycle length, and relative and absolute cycle phase duration of the different techniques at the different speed levels were analysed by means of a video analysis system. The cycle rate in all tested classical and freestyle techniques was found to increase significantly (p < .01) with speed from slow to maximum. Simultaneously, there was a significant decrease in the absolute phase durations of all the investigated skiing techniques. A minor, not significant, change in cycle length, and the significant increase in cycle rate with speed showed that the classical and freestyle cross-country skiing styles are dependent, to a large extent, on an increase in cycle rate for speed adaptation. A striking finding was the constant relative phase duration with speed, which indicates a simplified neural control of the speed adaptation in both cross-country skiing styles. For the practitioner, the knowledge about the importance of increasing cycle frequency rather than cycle length in the speed adaptation can be used to optimise a rapid increase in speed. The knowledge about the decrease in absolute phase duration, especially the thrust phase duration, points to the need for strength and technique training to enable force production at a high cycle rate and skiing speed. The knowledge that the relative phase duration stays constant with speed may be used to simplify the learning of the different cross-country skiing techniques.  相似文献   

9.
The aims of this study were to compare the aerobic energy cost of four 'on-snow' skating techniques in cross-country skiing and to examine the relationships between performance and aerobic energy cost. Twelve male skiers from recreational to national standard performed four level skating trials of 6 min duration in random order, each at the same submaximal velocity but with a different skating technique: (1) 'offset' (V1), using a double asymmetrical and asynchronous pole plant as weight is transferred to one ski; (2) 'two-skate' (V2A), where the pole plant is symmetrical; (3) 'one-skate' (V2), where there is a pole plant as weight is transferred to each ski; and (4) 'conventional', without poles. Oxygen uptake (VO2), pulmonary ventilation, the respiratory exchange ratio and heart rate were measured using a K4(b2) portable gas analyser. The aerobic energy cost (VO2/mean speed) and heart rate were higher (P < 0.05) in the one-skate than in the offset condition. This may be explained by the greater and more efficient use of the upper body and the lower variation in centre of gravity velocity in the offset condition. The aerobic energy cost was 5-9% higher (P < 0.01) in the conventional than in the other techniques, probably because of the shorter duration of propulsive forces within a cycle in the conventional skating condition. Moreover, in ski skating, the mechanical efficiency (propulsive forces/total forces) was shown to be higher in the upper than in the lower limbs. The correlation coefficient between performance and aerobic energy cost was significant in the two-skate (r = 0.68, P = 0.02), one-skate (r = 0.72, P = 0.01) and conventional (r = 0.62, P = 0.04) conditions, but not in the offset condition (r = 0.50, P = 0.10). Our results stress the importance of the upper body component in cross-country skiing and that the aerobic energy cost discriminates between skiers of different standards.  相似文献   

10.
The aims of the study were to: (1) adapt the "double-push" technique from inline skating to cross-country skiing; (2) compare this new skiing technique with the conventional skate skiing cross-country technique; and (3) test the hypothesis that the double-push technique improves skiing speed in a short sprint. 13 elite skiers performed maximum-speed sprints over 100 m using the double-push skate skiing technique and using the conventional "V2" skate skiing technique. Pole and plantar forces, knee angle, cycle characteristics, and electromyography of nine lower body muscles were analysed. We found that the double-push technique could be successfully transferred to cross-country skiing, and that this new technique is faster than the conventional skate skiing technique. The double-push technique was 2.9 +/- 2.2% faster (P < 0.001), which corresponds to a time advantage of 0.41 +/- 0.31 s over 100 m. The double-push technique had a longer cycle length and a lower cycle rate, and it was characterized by higher muscle activity, higher knee extension amplitudes and velocities, and higher peak foot forces, especially in the first phase of the push-off. Also, the foot was more loaded laterally in the double-push technique than in the conventional skate skiing technique.  相似文献   

11.
The purpose of the present study was to re-examine the relationship between deep body temperature and relative exercise intensity, during running rather than cycling (Saltin and Hermansen, 1966). Twenty male competitive and recreational distance runners, aged 22 + 0.9 years (mean +/- sx), were selected to form two groups, one with high maximal oxygen uptake (VO2max) values (72.8 +/- 0.8 ml x kg(-1) x min(-1)) and the other with moderate values (59.4 +/- 0.7 ml x kg(-1) x min(-1)). The participants completed two 60 min constant-paced treadmill runs at a common speed (absolute intensity) of 10.5 km x h(-1) and at a relative exercise intensity at a speed equivalent to 65% of VO2max. During the relative exercise intensity trial, no differences were found in rectal temperature, skin temperature or heart rate between groups. However, when running at the common speed, differences were identified in rectal temperature. At 60 min, rectal temperature was 37.70 +/- 0.19 degrees C and 38.19 +/- 0.11 degrees C for the high and moderate VO2max groups, respectively (P < 0.05). Sweat lost was significantly higher in the moderate VO2max group (moderate: 1.05 +/- 0.06 kg x h(-1); high: 0.82 +/- 0.08 kg x h(-1); P < 0.05). Heart rates were also different between groups over the first 20 min during the common speed trial (P < 0.05). The results of the present study support the findings of Saltin and Hermansen (1966), in that the set-point at which temperature is maintained is related to the relative exercise intensity.  相似文献   

12.
The influences of growth, training and various training methods were investigated by analysing long-term training effects in young cross-country and biathlon skiers (n = 129). Some athletes (n = 49) were studied six times in three years and some at least once a year during a four year period (n = 48). During three summer training periods skiers emphasized either intensive training or distance training or continued to train normally. The results indicated that maximal oxygen uptake (VO2 max) and heart volume increased between 15 and 20 years of age and the most significant changes in heart volume were observed between 16 and 18 years of age. International level skiers were able to increase their VO2 max and heart volume even after 20 years of age. Anaerobic threshold (AT, ml kg-1 min-1) increased like VO2 max but when expressed as a percentage of VO2 max, the AT was similar in every age group over 16 years of age. Intensive training at the intensity of anaerobic threshold or higher was observed to be most effective in producing improvements in VO2 max. Low-intensity distance training was more effective in producing improvements in anaerobic threshold.  相似文献   

13.
目的:构建男子越野滑雪运动员选材指标体系,研制选材标准的评价模型。方法:问卷调查、专家访谈、实验测试、数理统计等。结果:(1)构建了11~12岁、13~14岁、15~16岁、17~18岁四个年龄组的男子越野滑雪运动员选材指标体系,其中4项身体形态指标包括下肢长B/身高、体脂百分比、年龄-骨龄、指间距-身高;2项身体机能指标为最大摄氧量相对值、血红蛋白;5项运动心理指标包括反应时、速度知觉、意志品质量表、注意力测试、操作思维;10项运动素质指标包括上肢爆发力、纵跳、3 000 m跑、立位体前屈、闭眼单脚站立、立定跳远、20 m冲刺、引体向上、六边形跳、功能动作筛查(FMS);3项专项成绩指标包括雪上计时1.2 km、5 km、10 km。(2)选材评价模型集成于Web端自动化评估软件,基于越野滑雪运动员选材指标体系与评价标准表,通过百分位数法建立的“P60入围”与“P90精英”两条临界线,评价模型回代检验结果客观有效。结论:我国男子越野滑雪运动员选材指标体系涵盖4个年龄组,包括5项一级指标、15项二级指标、24项三级指标,并依据不同指标权重研制评价模型,为创新越野滑雪项目的精英运动员选拔方法提供理论依据。  相似文献   

14.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

15.
The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; VO2peak 61 ml x kg(-1) x min(-1), s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70% VO2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

16.
栾海燕 《冰雪运动》2008,30(1):36-38
越野滑雪运动员根据滑雪场地不同地形的需要,熟练运用最合理的滑行技术可以减小雪板与雪地之间的摩擦力和空气阻力,达到以最小的体能代价获得最佳运动速度的目的。分析越野滑雪运动员在不同滑道地形自由滑行技术的特点,探讨运动员在各种地形中使用自由滑行技术的合理性,并在训练中针对平原——缓上坡——缓下坡——陡上坡等地势变化的具体情况,培养运动员合理运用自由滑行技术,使越野滑雪运动员取得更优异的运动成绩。  相似文献   

17.
短距离越野滑雪是一项比赛强度高、轮次多、赛间间歇短的体能类项目,是我国备战2022年北京冬奥会的重要突破口。主要基于英文文献,探寻世界级短距离越野滑雪运动员专项体能特征,为提升我国该项目专项体能的科学训练水平提供参考。研究发现:1)世界级短距离越野滑雪男女运动员的身高分别为175~188 vs.166~176 cm,体重为70~92 vs.55~70 kg,瘦体重占比接近83 vs.70%;2)比赛中的能量供应以有氧代谢为主,并呈现有氧无氧动态交替主导;3)具有较高平均滑行速度和连续"多赛"能力,在起滑和冲刺阶段的速度最快,高速滑行中上、下肢呈现明显的"爆发式"用力特征,躯干力量对各种技术动作运用具有重要影响。为此,国家队冬奥备战科技助力应围绕专项体能突破展开重点攻关,深入探寻影响比赛高速滑行保持能力的生理学与运动学因素,加快提升比赛表现水平。  相似文献   

18.
短距离越野滑雪是一项比赛强度高、轮次多、赛间间歇短的体能类项目,是我国备战2022年北京冬奥会的重要突破口。主要基于英文文献,探寻世界级短距离越野滑雪运动员专项体能特征,为提升我国该项目专项体能的科学训练水平提供参考。研究发现:1)世界级短距离越野滑雪男女运动员的身高分别为175~188 vs.166~176 cm,体重为70~92 vs.55~70 kg,瘦体重占比接近83 vs.70%;2)比赛中的能量供应以有氧代谢为主,并呈现有氧无氧动态交替主导;3)具有较高平均滑行速度和连续"多赛"能力,在起滑和冲刺阶段的速度最快,高速滑行中上、下肢呈现明显的"爆发式"用力特征,躯干力量对各种技术动作运用具有重要影响。为此,国家队冬奥备战科技助力应围绕专项体能突破展开重点攻关,深入探寻影响比赛高速滑行保持能力的生理学与运动学因素,加快提升比赛表现水平。  相似文献   

19.
The aim of this study was to devise a laboratory-based protocol for a motorized treadmill that was representative of work rates observed during soccer match-play. Selected physiological responses to this soccer-specific intermittent exercise protocol were then compared with steady-rate exercise performed at the same average speed. Seven male university soccer players (mean +/- s: age 24 +/- 2 years, height 1.78 +/- 0.1 m, mass 72.2 +/- 5.0 kg, VO2max 57.8 +/- 4 ml x kg(-1) x min(-1)) completed a 45-min soccer-specific intermittent exercise protocol on a motorized treadmill. They also completed a continuous steady-rate exercise session for an identical period at the same average speed. The physiological responses to the laboratory-based soccer-specific protocol were similar to values previously observed for soccer match-play (oxygen consumption approximately 68% of maximum, heart rate 168 +/- 10 beats x min(-1)). No significant differences were observed in oxygen consumption, heart rate, rectal temperature or sweat production rate between the two conditions. Average minute ventilation was greater (P < 0.05) in intermittent exercise (81.3 +/- 0.2 l x min(-1)) than steady-rate exercise (72.4 +/- 11.4 l x min(-1)). The rating of perceived exertion for the session as a whole was 15 +/- 2 during soccer-specific intermittent exercise and 12 +/- 1 for continuous exercise (P < 0.05). The physiological strain associated with the laboratory-based soccer-specific intermittent protocol was similar to that associated with 45 min of soccer match-play, based on the variables measured, indicating the relevance of the simulation as a model of match-play work rates. Soccer-specific intermittent exercise did not increase the demands placed on the aerobic energy systems compared to continuous exercise performed at the same average speed, although the results indicate that anaerobic energy provision is more important during intermittent than during continuous exercise at the same average speed.  相似文献   

20.
Cross-country skiers use roller skis for their snow-free training with the aim of imitating skiing on snow. Also, exercise laboratories evaluate the biomechanics and physiology of cross-country skiing using roller skis on a treadmill. The roller skis on the market that are constructed for use in the classical style are equipped with a front and a back wheel, one of which has a ratchet to enable it to grip the surface when diagonal striding and kick double poling (static friction). The aim of this study was to investigate static friction coefficients (μS) of ratcheted wheel roller skis, and compare the results to the μS reported from skiing on snow with grip-waxed cross-country skis. Also, a new type of roller ski with a camber and adjustable grip function was evaluated. The results showed that ratcheted wheel roller skis, on a treadmill rubber mat and on dry and wet asphalt surfaces, reached μS values that were five to eight times greater than the values reported from on-snow skiing with grip-waxed cross-country skis. For the roller skis with a camber and adjustable grip function, the μs could be varied from no grip at all up to the level of the tested ratcheted wheel roller skis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号