首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
定理二次函数y=ax2+bx+c的值域是[0,+∞)的充要条件是a>0且b2-4ac=0. 证明因为y=ax2+bx+c=a(x+b/2a)2+4ac-b2/4a,x∈R,所以二次函数y=ax2+bx+c的值域是[0,+∞)←→y的最小值是0,无最大值←→a>0且b2-4ac=0.  相似文献   

2.
内容概述二次函数的解析式由条件确定二次函数的解析式需要三个独立的条件,一般有如下三种特定形式:1.一般式y=ax2+bx+c(a≠0)2.顶点式y=a(x-m)2+h(a≠0)3.分解式y=a(x-x1)(x-x2)(a≠0)二次函数的最值对二次函数f(x)=ax2+bx+c(a≠0)若自变量x为任意实数,其最值情况为:当a>0,x=-b/2a,fmin=4ac-b2/4a;当a<0,x=-b/2a,fmax=4ac-b2/4a.若自变量x在范围x1≤x≤x2上取值时,其最值情况为:对a>0,有如下结论:  相似文献   

3.
某些电路问题的求解,利用到以下二次函数知识:抛物线y=ax2+bx+c(a≠0),当x+-b/2a时,若a>0,则y最小=4ac-b2/4a;若a<0,则y最大=4ac-b2/4a  相似文献   

4.
知识网络图解2 基础知识梳理( 1)定义 :形如y=ax2 +bx +c(a≠ 0 ) (一般式 )的函数叫做二次函数 ,其图象是抛物线 .( 2 )图象画法 :用描点法 ,先确定顶点、对称轴、开口方向 ,再对称地描点 (一般取 5点 ) .( 3)抛物线y =ax2 +bx +c=a(x +b2a) 2 +4ac -b24a 的对称轴是直线x =- b2a,顶点坐标是 ( -b2a,4ac -b24a ) .当a >0时 ,开口向上 ,在对称轴左侧 ,y随x的增大而减小 ,在对称轴右侧 ,y随x的增大而增大 ,x =- b2a时 ,y有最小值4ac-b24a ;当a <0时 ,开口向下 ,在对称轴左侧 ,y随x的增大而增大 ,在对称轴右侧 ,y随x的增大而减小 ,x =- b2a …  相似文献   

5.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

6.
<正>抛物线y=ax2+bx+c(a≠0,a,b,c都是常数)与抛物线y=ax2(a≠0,a是常数)是全等的图形,其开口方向与开口大小相同,仅仅位置不同.下面解答以原点为位似中心,变换前后抛物线的位似比值是1∶2时的函数解析式问题:y=ax2+bx+c的顶点式是y=a(x-h)2+k则顶点坐标是(h,k),如图1,位似变换y=ax2+bx+c后  相似文献   

7.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

8.
学习目标掌握二次函数最值问题.学习目标(一)二次函数y=ax2+bx+c在自变量取任意实数时的最值情况:当a>0时,函数在x=-b/2a处取得最小值4ac-b2/4a;  相似文献   

9.
二次函数y =ax2 bx c(a≠0 )的顶点式y =a(x b2a) 2 -Δ4a(Δ=b2 -4ac)较为优越,因为顶点式能够体现出二次函数y =ax2 bx c(a≠0 )图象的特征:( 1 )开口方向(由a确定:a >0 ,开口向上;a<0 ,开口向下) ;( 2 )对称轴方程(x b2a=0 ) ;( 3 )顶点位置,即最高点或最低点的位置(点的横坐标x =-b2a,点的纵坐标y =-Δ4a) .由顶点式也能确定出二次函数y =ax2 bx c(a≠0 )的最值(当a >0时有最小值y =-Δ4a;当a <0时有最大值y =-Δ4a) .如果已知二次函数的对称轴,或顶点位置,或最值,采用顶点式y =a(x h) 2 k确定二次函数的解析式较简捷.( 1 )…  相似文献   

10.
陈宝义  李培华 《初中生》2015,(36):26-27
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)和一元二次方程ax2+bx+c=0有着密切的联系.对于二次函数或一元二次方程问题,我们依据题目的特征,灵活处理,则能使某些问题得到简捷、巧妙的解决. 抛物线y=ax2+bx+c与x轴的交点、一元二次方程ax2+bx+c=0的根、判别式△=b2-4ac的符号关系如下表: 一、求方程的根 例1(2014年柳州卷)小兰画了y=x2+ax+b的图像如图1所示,则关于x的方程x2+ax+b =0的解是().  相似文献   

11.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

12.
一元二次方程根的判别式是初中数学中的一个重要内容,应用其解题是初中数学中的一种重要方法.在近年来全国各省市数学竞赛中屡见不鲜,本文举例说明其广泛应用,供参考.一、求参数值例1(2003年全国初中数学竞赛天津赛区初赛)已知二次函数y=ax2+bx+c,一次函数y=k(x-1)-k24,若它们的图象对于任意的实数k都只有一个公共点,则二次函数的解析式为.解:由题意得y2=ax+bx+cy=k(x-1)-k24整理得:ax2+(b-k)x+(c+k+k24)=0.又由根的判别式Δ=(b-k)2-4a(c+k+k24)=0,即(1-a)k2-2(b+2a)k+(b2-4ac)=0.(1)由于(1)中对任意的实数k均成立,故解得a=1,b=-2,c=1.二、…  相似文献   

13.
1.配方法二次函数y=ax2 bx c,当x=-b/2a时,若a<0,ymax=4ac-b2/4a;  相似文献   

14.
思考步骤(1)把y=ax2看成y=a(x+0)2+0,从中可直观地看出此函数的对称轴为直线x=0(即y轴),y最值=0.(2)把给出的二次函数y=ax2+bx+c通过配方变成y=[a(x+b/(2a))~2]+(4ac-b~2)/(4a),然后找出对称轴方程为x=-b/2a,y最值=(4ac-b~2)/4a.  相似文献   

15.
无理函数 y =mx +n + lax2 +bx +c(mla??綒 0 )的值域已有好多文章通过举例进行了讨论 ,如文 [1]、[2 ]、[3],各自从不同的角度 ,用不同的方法作了分析 ,但没有给出一个通用的结论表达式 .本文通过换元、构造圆锥曲线 ,利用解析的方法分五种情形解决这一问题 .1 a >0 ,b2 - 4ac>0 ,l >0此时 ,函数y =mx +n +lax2 +bx +c的定义域为 {x|x≤x1或x≥x2 } ,其中x1、x2 是方程ax2 +bx +c =0的两个根 ,且x1相似文献   

16.
二元一次方程一般式可表示为:ax by=c(a≠0,b≠0)方程变形→y a/bx=c/b→y=-a/bx c/b 令-a/b=k,c/b=h,则原方程变形为y=kx h(k≠0)的形式,即将方程转化为关于x的一次函数,其中x为自变量,函数y=kx h在直角坐标系中表示一条直线,k表示直线的倾斜程度,b表示直线与y轴交点的纵坐标. 方程组中任何一个方程的解都有无数多个,两个方程的公共解便是方程组的解,有时  相似文献   

17.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

18.
因为二次函数y=ax2+bx+c(a≠0)的图象与a,b,c,△有关系,所以由二次函数的大至图象就能确定二次函数中的系数和△的关系.现举例说明.例1已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论1b2-4ac<0,2ab>0,3a-b+c=0,44a+b=0,5当y=2时,x只能有一个值.其中正确是()  相似文献   

19.
设直线y=kx+b与抛物线y=ax2+bx+c的交点为Q(x1,y1)、P(x2,y2),要求其交点的坐标,则需解方程组({)y=ax2+bx+c,y=kx+b.  相似文献   

20.
正一元二次方程以及二次函数是九年级的重要内容,它们之间联系紧密。我现对它们的关系加以总结、归纳,来帮助学生学习和复习。二次函数通用解析式为:y=ax2+bx+c(a、b、c为常数,a≠0),一元二次方程一般形式为ax2+bx+c=0(a、b、c为常数,a≠0),单从形成上看就很像。当二次函数的值为零时,也就是说求解二次函数与x轴交点问题时,可转化为一元二次方程来解决。一、一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c图像与x轴的交点1.△0时,方程有两个不相等的实数根x1、x2,二次函数与x轴有两个不同的交点,其  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号