首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rock climbing, karabiners are used to arrest falls and consequently must be able to withstand dynamic loads. The current international standard for rating karabiner strength prescribes a quasi-static tensile test, which poorly simulates the dynamic nature of an actual climbing fall. In this study, a new method was developed to measure the dynamic failure loads of climbing karabiners. Both new and heavily worn karabiners were tested open and closed, and results from static and dynamic tests were compared. We found that the dynamic failure loads of closed karabiners were up to 50% lower than the failure loads in static tests, while for open karabiners, the static and dynamic values were similar. The reason for this behaviour is unclear; it is most likely due to the combined effects of different stress concentrations and loading regimes of the two tests. Irrespective of test type, karabiner strength decreased with wear level. Based on our results, we advise frequent inspection of permanently placed karabiners for signs of excessive wear. In addition, testing of climbing karabiners in a dynamic test in addition to the standard static test might be considered when developing new karabiner models.  相似文献   

2.
When the boundary layer of a sports ball undergoes the transition from laminar to turbulent flow, a drag crisis occurs whereby the drag coefficient (C d) rapidly decreases. However, the aerodynamic properties and boundary-layer dynamics of a soccer ball are not yet well understood. In this study we showed that the critical Reynolds number (Re crit) of soccer balls ranged from 2.2 × 105 to 3.0 × 105. Wind-tunnel testing, along with visualisation of the dynamics of the boundary layer and the trailing vortex of a ball in flight, demonstrated that both non-spinning and spinning (curved) balls had lowC d values in the super-critical region. In addition, theRe crit values of the soccer balls were lower than those of smooth spheres, ranging from ∼ 3.5 × 105 to 4.0 × 105, due to the effects of their panels. This indicated that the aerodynamic properties of a soccer ball were intermediate between those of a smooth ball and a golf ball. In a flow visualisation experiment, the separation point retreated and theC d decreased in a super-critical regime compared with those in a sub-critical regime, suggesting a phenomenon similar to that observed in other sports balls. With some non-spinning and spinning soccer balls, the wake varied over time. In general, the high-frequency component of an eddy dissipated, while the low-frequency component increased as the downstream vortex increased. The causes of the large-scale fluctuations in the vortex observed in the present study were unclear; however, it is possible that a ‘knuckle-ball effect’ of the non-rotating ball played a role in this phenomenon.  相似文献   

3.
The purpose of this study was to investigate the effect of skate blade hollow on oxygen consumption during forward skating on a treadmill. Varsity level female hockey players (n = 10, age = 21.7 years) performed skating tests at three blade hollows [0.25 in (6.35 mm), 0.50 in (12.7 mm), and 0.75 in (19.05 mm)]. The subjects skated for four minutes at three submaximal velocities (12, 14 and 16 km h−1), separated by five minutes of passive recovery. In addition, a VO2max test was performed on the day that the subjects skated at the 0.50 in hollow. The VO2max test commenced at 14 km h−1 and increased by 1 km h−1 each minute until volitional exhaustion was achieved. Four variables were measured for each skating bout, volume of gas expired (V E), volume of oxygen consumed (VO 2), heart rate (HR) and rating of perceived exertion (RPE). No significant differences (p < 0.05) were found in any of the four test variables (V E, VO2, HR, RPE) across the three skate hollows. These results show that when skating on a treadmill at submaximal velocities, skate blade hollow has no significant effect onV E, VO2, HR or RPE.  相似文献   

4.
Abstract

Measurements are presented of the speed at which six different rods could be swung by four male students. Three of the rods had the same mass but their swing-weight (i.e. moment of inertia) differed by large factors. The other three rods had the same swing-weight but different masses. Our primary objective was to quantify the effects of mass and swing-weight on swing speed. The result has a direct bearing on whether baseball, tennis, cricket and golf participants should choose a heavy or light implement to impart maximum speed to a ball. When swinging with maximum effort, swing speed (V) was found to decrease as swing-weight (I o) increased, according to the relation V?=?C/I o n , where C is a different constant for each participant and n?=?0.27 when I o >?0.03 kg?·?m2. Remarkably similar results were obtained previously with softball bats (where n?=?0.25) and golf clubs (where n?=?0.26). Swing speed remained approximately constant as swing mass increased (when keeping swing-weight fixed). The implications for racket power are discussed.  相似文献   

5.
Abstract

In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O2max) and ventilatory thresholds (VT1 and VT2) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O2 corresponding to VT1 and VT2 were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O2 (ml · min?1) was different between groups for VT1, VT2, and [Vdot]O2max. Ratio standards (ml · kg?1 · min?1) were not significantly different between groups for VT1, VT2, and [Vdot]O2max. Theoretical exponents (ml · kg?0.67 · min?1 and ml · kg?0.75 · min?1) were not properly adjusted for the body mass effects on VT1, VT2, and [Vdot]O2max. When the data were correctly adjusted using experimentally observed exponents, VT1 (ml · kg?0.94 · min?1) and VT2 (ml · kg?0.95 · min?1) were not different between groups. The experimentally observed exponent for [Vdot]O2max (ml · kg?0.90 · min?1) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT1, VT2 or [Vdot]O2max when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   

6.
This study examined the effect of hypoxia on growth hormone (GH) release during an acute bout of high-intensity, low-volume resistance exercise. Using a single-blinded, randomised crossover design, 16 resistance-trained males completed two resistance exercise sessions in normobaric hypoxia (HYP; inspiratory oxygen fraction, (FiO2) 0.12, arterial oxygen saturation (SpO2) 82?±?2%) and normoxia (NOR; FiO2 0.21, SpO2 98?±?0%). Each session consisted of five sets of three repetitions of 45° leg press and bench press at 85% of one repetition maximum. Heart rate, SpO2, and electromyographic activity (EMG) of the vastus lateralis muscle were measured throughout the protocol. Serum lactate and GH levels were determined pre-exposure, and at 5, 15, 30 and 60?min post-exercise. Differences in mean and integrated EMG between HYP and NOR treatments were unclear. However, there was an important increase in the peak levels and area under the curve of both lactate (HYP 5.8?±?1.8 v NOR 3.9?±?1.1?mmol.L?1 and HYP 138.7?±?33.1 v NOR 105.8?±?20.8?min.mmol.L?1) and GH (HYP 4.4?±?3.1 v NOR 2.1?±?2.5?ng.mL?1 and HYP 117.7?±?86.9 v NOR 72.9?±?85.3?min.ng.mL?1) in response to HYP. These results suggest that performing high-intensity resistance exercise in a hypoxic environment may provide a beneficial endocrine response without compromising the neuromuscular activation required for maximal strength development.  相似文献   

7.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

8.
We investigated combined effects of ambient temperature (23°C or 13°C) and fraction of inspired oxygen (21%O2 or 13%O2) on energy cost of walking (Cw: J·kg?1·km?1) and economical speed (ES). Eighteen healthy young adults (11 males, seven females) walked at seven speeds from 0.67 to 1.67 m s?1 (four min per stage). Environmental conditions were set; thermoneutral (N: 23°C) with normoxia (N: 21%O2) = NN; 23°C (N) with hypoxia (H: 13%O2) = NH; cool (C: 13°C) with 21%O2 (N) = CN, and 13°C (C) with 13%O2 (H) = CH. Muscle deoxygenation (HHb) and tissue O2 saturation (StO2) were measured at tibialis anterior. We found a significantly slower ES in NH (1.289 ± 0.091 m s?1) and CH (1.275 ± 0.099 m s?1) than in NN (1.334 ± 0.112 m s?1) and CN (1.332 ± 0.104 m s?1). Changes in HHb and StO2 were related to the ES. These results suggested that the combined effects (exposure to hypoxia and cool) is nearly equal to exposure to hypoxia and cool individually. Specifically, acute moderate hypoxia slowed the ES by approx. 4%, but acute cool environment did not affect the ES. Further, HHb and StO2 may partly account for an individual ES.  相似文献   

9.
Abstract

We hypothesised that experienced runners would select a stride frequency closer to the optimum (minimal energy costs) than would novice runners. In addition, we expected that optimal stride frequency could simply be determined by monitoring heart rate without measuring oxygen consumption (V?O2). Ten healthy males (mean±s: 24±2 year) with no running training experience and 10 trained runners of similar age ran at constant treadmill speed corresponding to 80% of individual ventilatory threshold. For two days, they ran at seven different stride frequencies (self-selected stride frequency±18%) imposed by a metronome. Optimal stride frequency was based on the minimum of a second-order polynomial equation fitted through steady state V?O2 at each stride frequency. Running cost (mean±s) at optimal stride frequency was higher (P < 0.05) in novice (236±31 ml O2·kg?1.km?1) than trained (189±13 ml O2·kg?1.km?1) runners. Self-selected stride frequency (mean±s; strides.min?1) for novice (77.8±2.8) and trained runners (84.4±5.3) were lower (P < 0.05) than optimal stride frequency (respectively, 84.9±5.0 and 87.1±4.8). The difference between self-selected and optimal stride frequency was smaller (P < 0.05) for trained runners. In both the groups optimal stride frequency established with heart rate was not different (P > 0.3) from optimal stride frequency based on V?O2. In each group and despite limited variation between participants, optimal stride frequencies derived from V?O2 and heart rate were related (r > 0.7; P < 0.05). In conclusion, trained runners chose a stride frequency closer to the optimum for energy expenditure than novices. Heart rate could be used to establish optimal stride frequency.  相似文献   

10.
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (?5% gradient; n?=?10) or flat (n?=?9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (?O2max). No changes in EC were observed during flat running following downhill (1.22?±?0.09 vs 1.20?±?0.07?Kcal?kg?1?km?1, P?=?.41) or flat run training (1.21?±?0.13 vs 1.19?±?0.12?Kcal?kg?1?km?1). Moreover, no changes in EC during downhill running were observed in either condition (P?>?.23). vLTP increased following both downhill (16.5?±?0.7 vs 16.9?±?0.6?km?h?1 , P?=?.05) and flat run training (16.9?±?0.7 vs 17.2?±?1.0?km?h?1, P?=?.05), though no differences in responses were observed between groups (P?=?.53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.  相似文献   

11.
Abstract

The aims of the study were to investigate blood lactate recovery and respiratory variables during diagonal skiing of variable intensity in skiers at different performance levels. Twelve male cross-country skiers classified as elite (n=6; [Vdot]O2max=73±3 ml · kg?1 · min?1) or moderately trained (n=6; [Vdot]O2max=61±5 ml · kg?1 · min?1) performed a 48-min variable intensity protocol on a treadmill using the diagonal stride technique on roller skis, alternating between 3 min at 90% and 6 min at 70% of [Vdot]O2max. None of the moderately trained skiers were able to complete the variable intensity protocol and there was a difference in time to exhaustion between the two groups (elite: 45.0±7.3 min; moderately trained: 31.4±10.4 min) (P<0.05). The elite skiers had lower blood lactate concentrations and higher blood base excess concentrations at all 70% workloads than the moderately trained skiers (all P<0.05). In contrast, [Vdot] E/[Vdot]O2 and [Vdot] E/[Vdot]CO2 at the 70% [Vdot]O2max workloads decreased independently of group (P<0.05). Partial correlations showed that [Vdot]O2max was related to blood lactate at the first and second intervals at 70% of [Vdot]O2max (r=?0.81 and r=?0.82; both P<0.01) but not to [Vdot] E/[Vdot]O2, [Vdot] E/[Vdot]CO2 or the respiratory exchange ratio. Our results demonstrate that during diagonal skiing of variable intensity, (1) elite skiers have superior blood lactate recovery compared with moderately trained skiers, who did not show any lactate recovery at 70% of [Vdot]O2max, suggesting it is an important characteristic for performance; and (2) the decreases in respiratory exchange ratio, [Vdot] E/[Vdot]O2, and [Vdot] E/[Vdot]CO2 do not differ between elite and moderately trained skiers.  相似文献   

12.
Abstract

The determination of the ventilatory threshold has been a persistent problem in research and clinical practice. Several computerized methods have been developed to overcome the subjectivity of visual methods but it remains unclear whether different computerized methods yield similar results. The purpose of this study was to compare nine regression-based computerized methods for the determination of the ventilatory threshold. Two samples of young and healthy volunteers (n = 30 each) participated in incremental treadmill protocols to volitional fatigue. The ventilatory data were averaged in 20-s segments and analysed with a computer program. Significant variance among methods was found in both samples (Sample 1: F = 11.50; Sample 2: F = 11.70, P < 0.001 for both). The estimates of the ventilatory threshold ranged from 2.47 litres · min?1 (71%[Vdot]O2max) to 3.13 litres · min?1 (90%[Vdot]O2max) in Sample 1 and from 2.37 litres · min?1 (67%[Vdot]O2max) to 3.03 litres · min?1 (83%[Vdot]O2max) in Sample 2. The substantial differences between methods challenge the practice of relying on any single computerized method. A standardized protocol, likely based on a combination of methods, might be necessary to increase the methodological consistency in both research and clinical practice.  相似文献   

13.
Abstract

Previous investigations have revealed that in well-trained middle-distance runners, oxygen uptake (VO2) does not attain maximal values (VO2max) in exhaustive treadmill trials where the VO2 demand exceeds VO2max. To date, this shortfall in the VO2 attained has been demonstrated in trials as short as 2 min in duration. In this study, we investigated whether a reduction in exhaustive test duration influences the VO2 attained during running on a treadmill. Six middle-distance runners participated in the study, completing an exhaustive 400 m and 800 m trial. These trials, together with a progressive test to determine VO2max, were completed in a counterbalanced order. Oxygen uptakes attained during the 400 m and 800 m trials were compared to examine the influence of exhaustive test duration. A plateau in VO2 was observed in all participants for the progressive test, demonstrating the attainment of VO2max. The mean speed, duration, and resulting distance in the constant-speed exhaustive trials were 25.8 km · h?1 (s=1.2), 55.8 s (s=2.3), and 400.2 m (s=20.2) for the 400 m trial, and 24.3 km · h?1 (s=0.8), 108.4 s (s=21.2), and 730.1 m (s=129.1) for the 800 m trial, respectively. A paired-samples t-test revealed a significantly different (P=0.018)%VO2max was attained for the 400 m (85.7%, s=3.0) and 800 m (89.1%, s=5.0) trials. In conclusion, VO2 did not reach VO2max during the exhaustive constant-speed 400 m and 800 m trials, but the test duration does influence the%VO2max achieved. Specifically, the VO2 attained becomes progressively further below VO2max as trial duration is reduced, such that 89% and 86% VO2max is achieved in exhaustive 800 m and 400 m constant-speed trials, respectively.  相似文献   

14.
The influences of growth, training and various training methods were investigated by analysing long‐term training effects in young cross‐country and biathlon skiers (n = 129). Some athletes (n = 49) were studied six times in three years and some at least once a year during a four year period (n = 48). During three summer training periods skiers emphasized either intensive training or distance training or continued to train normally. The results indicated that maximal oxygen uptake (VO2 max) and heart volume increased between 15 and 20 years of age and the most significant changes in heart volume were observed between 16 and 18 years of age. International level skiers were able to increase their VO2 max and heart volume even after 20 years of age. Anaerobic threshold (AT, ml kg‐1 min‐1) increased like VO2 max but when expressed as a percentage of VO2 max, the AT was similar in every age group over 16 years of age. Intensive training at the intensity of anaerobic threshold or higher was observed to be most effective in producing improvements in VO2 max. Low‐intensity distance training was more effective in producing improvements in anaerobic threshold.  相似文献   

15.
The aim was to compare the passive drag-gliding underwater by a numerical simulation and an analytical procedure. An Olympic swimmer was scanned by computer tomography and modelled gliding at a 0.75-m depth in the streamlined position. Steady-state computer fluid dynamics (CFD) analyses were performed on Fluent. A set of analytical procedures was selected concurrently. Friction drag (Df), pressure drag (Dpr), total passive drag force (Df+pr) and drag coefficient (CD) were computed between 1.3 and 2.5 m · s?1 by both techniques. Df+pr ranged from 45.44 to 144.06 N with CFD, from 46.03 to 167.06 N with the analytical procedure (differences: from 1.28% to 13.77%). CD ranged between 0.698 and 0.622 by CFD, 0.657 and 0.644 by analytical procedures (differences: 0.40–6.30%). Linear regression models showed a very high association for Df+pr plotted in absolute values (R2 = 0.98) and after log–log transformation (R2 = 0.99). The CD also obtained a very high adjustment for both absolute (R2 = 0.97) and log–log plots (R2 = 0.97). The bias for the Df+pr was 8.37 N and 0.076 N after logarithmic transformation. Df represented between 15.97% and 18.82% of the Df+pr by the CFD, 14.66% and 16.21% by the analytical procedures. Therefore, despite the bias, analytical procedures offer a feasible way of gathering insight on one’s hydrodynamics characteristics.  相似文献   

16.
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23?±?5 yrs; stature 1.78?±?0.06 m; mass 72.6?±?9.2?kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (Fpeak) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (?25 to ?9.3?BW?s?1; 60% likely beneficial reduction) and plantar sensation was increased (46–58?mm) with the insole. Fpeak (?0.1 to 0.14?BW) and velocity (?0.02 to 0.06?m?s?1) were similar. Stride length, flight and contact time were lower (?0.13 to ?0.01 m; ?0.02 to?0.01?s; ?0.016 to ?0.006?s) and stride rate was higher (0.01–0.07 steps?s?1) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.  相似文献   

17.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). ‘Fitness’ was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol 1‐1(V‐2 mM) or 4 mmol 1‐1 (V‐4 mM), ‘relative running economy’ and 5 km times (r = 0.84), but modest and non‐significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 ± 1.97 min vs 20.97 ± 1.70 min; P <0.05). Therefore the results of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

18.
Abstract

Ten healthy, non-cycling trained males (age: 21.2 ± 2.2 years, body mass: 75.9 ± 13.4 kg, height: 178 ± 6 cm, [Vdot]O2PEAK: 46 ± 10 ml · kg?1 · min?1) performed a graded incremental exercise test, two familiarisation trials and six experimental trials. Experimental trials consisted of cycling to volitional exhaustion at 100%, 110% and 120% WPEAK, 60 min after ingesting either 0.3 g · kg?1 body mass sodium bicarbonate (NaHCO3) or 0.1 g · kg?1 body mass sodium chloride (placebo). NaHCO3 ingestion increased cycling capacity by 17% at 100% WPEAK (327 vs. 383 s; P = 0.02) although not at 110% WPEAK (249 vs. 254 s; P = 0.66) or 120% WPEAK (170 vs. 175 s; P = 0.60; placebo and NaHCO3 respectively). Heart rate (P = 0.02), blood lactate (P = 0.001), pH (P < 0.001), [HCO3 ?], (P < 0.001), and base excess (P < 0.001) were greater in all NaHCO3 trials. NaHCO3 attenuated localised ratings of perceived exertion (RPEL) to a greater extent than placebo only at 100% WPEAK (P < 0.02). Ratings of abdominal discomfort and gut fullness were mild but higher for NaHCO3. NaHCO3 ingestion significantly improves continuous constant load cycling at 100% WPEAK due to, in part, attenuation of RPEL.  相似文献   

19.
Abstract

It has been shown that the critical power (CP) in cycling estimated using a novel 3-min all-out protocol is reliable and closely matches the CP derived from conventional procedures. The purpose of this study was to assess the predictive validity of the all-out test CP estimate. We hypothesised that the all-out test CP would be significantly correlated with 16.1-km road time-trial (TT) performance and more strongly correlated with performance than the gas exchange threshold (GET), respiratory compensation point (RCP) and V?O2 max. Ten club-level male cyclists (mean±SD: age 33.8±8.2 y, body mass 73.8±4.3 kg, V?O2 max 60±4 ml·kg?1·min?1) performed a 10-mile road TT, a ramp incremental test to exhaustion, and two 3-min all-out tests, the first of which served as familiarisation. The 16.1-km TT performance (27.1±1.2 min) was significantly correlated with the CP (309±34 W; r=?0.83, P<0.01) and total work done during the all-out test (70.9±6.5 kJ; r=?0.86, P<0.01), the ramp incremental test peak power (433±30 W; r=?0.75, P<0.05) and the RCP (315±29 W; r=?0.68, P<0.05), but not with GET (151±32 W; r=?0.21) or the V?O2 max (4.41±0.25 L·min?1; r=?0.60). These data provide evidence for the predictive validity and practical performance relevance of the 3-min all-out test. The 3-min all-out test CP may represent a useful addition to the battery of tests employed by applied sport physiologists or coaches to track fitness and predict performance in atheletes.  相似文献   

20.
ABSTRACT

This study assessed the intra-individual reliability of oxygen saturation in intercostal muscles (SmO2-m.intercostales) during an incremental maximal treadmill exercise by using portable NIRS devices in a test-retest study. Fifteen marathon runners (age, 24.9 ± 2.0 years; body mass index, 21.6 ± 2.3 kg·m?2; V?O2-peak, 63.7 ± 5.9 mL·kg?1·min?1) were tested on two separate days, with a 7-day interval between the two measurements. Oxygen consumption (V?O2) was assessed using the breath-by-breath method during the V?O2-test, while SmO2 was determined using a portable commercial device, based in the near-infrared spectroscopy (NIRS) principle. The minute ventilation (VE), respiratory rate (RR), and tidal volume (Vt) were also monitored during the cardiopulmonary exercise test. For the SmO2-m.intercostales, the intraclass correlation coefficient (ICC) at rest, first (VT1) and second ventilatory (VT2) thresholds, and maximal stages were 0.90, 0.84, 0.92, and 0.93, respectively; the confidence intervals ranged from ?10.8% – +9.5% to ?15.3% – +12.5%. The reliability was good at low intensity (rest and VT1) and excellent at high intensity (VT2 and max). The Spearman correlation test revealed (p ≤ 0.001) an inverse association of SmO2-m.intercostales with V?O2 (ρ = ?0.64), VE (ρ = ?0.73), RR (ρ = ?0.70), and Vt (ρ = ?0.63). The relationship with the ventilatory variables showed that increased breathing effort during exercise could be registered adequately using a NIRS portable device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号