首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在人教教材中有一个不等式ex>1+x(x≠0),利用这个不等式及其变形可以证明不等式或恒成立问题,比直接用导数求解要简单,而且可以避免复杂的求导运算。
  原形:ex≥1+x当且仅当x=0时,等号成立;
  变形:ln(x+1)≤x(x>-1)当且仅当x=0时,等号成立;用导数证明很容易,过程略。  相似文献   

2.
用导数容易证得定理1lnx≤x-1(x>0)(当且仅当x=1时取等号).普通高中课程标准实验教科书《数学·选修2-2·A版》(人民教育出版社2007年第2版)第32页的习题第1题的第(3)小题"证明不等式:ex>1+x(x≠0)"的结论与该不等式是等价的.笔者认为,该不等式因其形式简  相似文献   

3.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

4.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

5.
利用导数容易证明我们熟知的不等式: 定理当x〉-1时,ln(x+1)≤x(当且仅当x=0时等号成立).  相似文献   

6.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

7.
《数学通报》2020年9期数学问题2562给出了不等式:已知a,b,c>0满足a+b+c=3,则1-ab 1+ab+1-bc 1+bc+1-ca 1+ca≥0(1).不等式结构对称,值得关注.为此,本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.为了表述方便,由∑n k=1 x k y k·∑n k=1 x ky k=∑n k=1 x k y k 2·∑n k=1 x ky k 2≥∑n k=1 x k 2,可得柯西不等式的一个变式:引理设x 1,x 2,…,x n>0,y 1,y 2,…,y n>0,则有∑n k=1 x k y k≥(∑n k=1 x k)2∑n k=1 x ky k(2),等号当且仅当y 1=y 2=…=y n时成立.  相似文献   

8.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

9.
正Pham Kim Hung不等式:设a,b,c≥0,a+b+c=2,证明:a~2b~2+b~2c2+c~2a~2+abc≤1①.当且仅当a=b=1,c=0及其循环排列时等号成立.这是Pham Kim Hung在《不等式的秘密》(第一卷)中提到并证明的一个有趣的不等式,文[2]将该不等式加强为  相似文献   

10.
2010年课标全国卷理科第21题:设函数f(x)=e~x-1-x-ax~2.(Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.解析:(Ⅰ)略;(Ⅱ)f′(x)=e~x-1-2ax,由(Ⅰ)知e~x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤1/2时,f′(x)≥0(x≥0),而f(0)=0,于是当x  相似文献   

11.
最近,笔者在研究lnx的性质偶然获得了lnx的一个上界估计,本文将证明这个不等式并给出它的一个应用.定理lnx≤2x-2(x2+1槡)(x>0),当且仅当x=2不等式取等号.证明设f(x)=lnx-2x+2(x2+1槡)(x>0),则f’(x)=1x-2+槡2x x2+槡1,  相似文献   

12.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

13.
现将基本不等式a2 +b2 ≥ 2ab推广如下 :定理 若x、y、a、b均为正数 ,则有xax+y+ ybx+y ≥ (x+ y)axby,( )当且仅当a=b时等号成立 .证明 由加权不等式得xax+yx+ y+ ybx+yx+ y≥ (ax+y) xx+y· (bx+y) yx+y,即xax+y+ ybx+y ≥ (x+y)axby,当且仅当ax+y =bx+y,即a=b时等号成立 .( )式可变形为ax+yby ≥ x+ yx ax - yxbx,( )利用上述变形 ( )式 ,来证明某些分式不等式 ,能起到化繁为简 ,化难为易之功效 .现举例说明如下 :例 1  (《数学通报》问题 871)设n∈N ,α、β∈(0 ,π2 ) ,求证 :sinn+2 αcosnβ + cosn+2 αsinnβ ≥ 1.证明 由 …  相似文献   

14.
若一元二次不等式ax2+bx+c≥0恒成立,且a>0,则b2-4ac≤0.由它易得推广1:若(x-k1)2+(x-k2)2+…+(x-kn)2≥0,则(k1+k2+…+kn)2≤n(k21+k22+…+k2n),当且仅当k1=k2=…=kn时,取等号.证明:略.  相似文献   

15.
原题(必修5P_(114))x>0,当x取什么值时,x+1/x的值最小?最小值是多少?解析x>0,1/x>0,所以x+1/x≥2(x·1/x)~(1/2)=2,当且仅当x=1/x,即x=1时,等号成立.所以当x=1时,x+ 1/x的值最小,最小值等于2.这是一个运用基本不等式求最值的问题,题虽  相似文献   

16.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

17.
众所周知,基本不等式(x+y)/2≥、xy~(1/2)(x>0,y>0)是初等数学中的一个极为重要、应用颇广的不等式。现把它推广如下: 若x>0,y>0,a>0,b>0,且a+b=1,则有ax+by≥x~(?)y~b(当且仅当x=y时等号成立)。  相似文献   

18.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

19.
由绝对值的意义考虑,可以得出如下基本性质:(1)若0<|a|<1,则|x|≥|ax|,当且仅当x=0时等号成立.(2)若a、b为实数,则|a|+|b|≥|a+b|.当a、b同号,或者a、b中有一个为0时等号成立(3)若a、b、c为实数,则|a|+|b|+|c|≥|a+b+c|.当下列之一情形时等号成立.①a、b、c同号;②a、b、c中有两个为0;③a、b、  相似文献   

20.
洪扬婷 《考试周刊》2014,(88):52-52
<正>二维形式的柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.上述不等式可以变形为:|ac+bd|a2+b%2姨≤c2+d%2姨,不等式的左边可以看成点(c,d)到直线ax+by=0的距离,当不等式的右边为定值时,左边有最大值.利用柯西不等式及其变形可以巧妙地解决如下最值问题.例1:求椭圆C:x216+y212=1上的点到直线l:x-2y=0的距离  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号