首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文[1]证明了一个不等武:0≤x,y,x_1,y_1≤1,x x_1=1,y y_1=1,则L_2=(x~2 y~2)~(1/2) (x~2_1 y~2)~(1/2) (x~2 y~2_1)~(1/2) (x~2_1 y~2_1)~(1/2)≤2 2~(1/2),并根据L_2的几何意义提出了猜想.设0≤z,y,z,x_1,y_1,z_1≤1,x x_1=1,y y_1=1,z z_1=1,则L_3=(x~2 y~2 z~2)~(1/2) (x~2_1 y~2 z~2)~(1/2) (x~2_1 y~2_1 z~2)~(1/2) (x~2 y~2_1 z~2)~(1/2) (x~2 y~2 z~2_1)~(1/2) (x~2_1 y~2 z~2_1)~(1/2) (x~2 y~2_1 z~2_1)~(1/2)  相似文献   

2.
笔者受本刊94 —3期“巧构直角三角形解题”启示,今发现一些不等式证明题运用作图法也比较简单。故举一例: 已知x,y,z∈R~ ,求证(x~2 y~2-xy)~(1/2) (y~2 z~2-yz)~(1/2)>(x~2 z~2-xz)~(1/2)。 证法 作三棱锥(如图),使SA=x,SB=y,SC=z,∠ASB=∠ASC=∠BSC=60°,  相似文献   

3.
第46届 IMO 第3题是不等式问题:正实数 x,y,z 满足 xyz≥1,证明(x~5-x~2)/(x~5 y~2 z~2) (y~5-y~2)/(y~5 z~2 x~2) (z~5-z~2)/(z~5 x~2 y~2)≥0.本文对其指数及项数作出一般性的推广.  相似文献   

4.
设x,y,Z∈R~ ,求证: (x~2 y~2 xy)~(1/2) (y~2 z~2 yz)~(1/2) (z~2 x~2 zx)~(1/2)≥3~(1/2)(x y z)。 这个不等式在较多地方已给出不同的证法。这里,再给出一种构造几何图形证明的方法,并加以推广及一般化。 证明 这个不等式中等号成立的充要条件是x=y=z,这是显然的。下面就讨论z,y,x不全相等的情形。如图1,∠AOA′=120°,OA=OA′,CC′∥BB′∥AA′。因此OB=OB′,OC=OC′。  相似文献   

5.
第46届 IMO 试题第3题是一道不等式题:正实数 x,y,z 满足 xyz≥1,证明(x~5-x~2)/(x~5 y~2 z~2) (y~5-y~2)/(y~5 z~2 x~2) (x~5-x~2)/(z~5 x~2 y~2)≥0.本题难度相当大,平均得分仅为0.91分,下面是笔者对命题的分析过程,供参照.要证明上述不等式是成立的,只要证明:  相似文献   

6.
正第49届国际数学奥林匹克数学竞赛第2题是:设实数x,y,z都不等于1,满足xyz=1,则x~2/(1-x)~2+y~2/(1-y)~2+z~2/(1-z)~2≥1.本文给出上述不等式的一个类比:命题1设实数x,y,z都不等于-1,且xyz=1,则x~2/(1+x)~2+y~2/(1+y)~2+z~2/(1+z)~2≥3/4.  相似文献   

7.
2010年全国高中数学联赛二试B卷第三题为:设x,y,z为非负实数,求证:((xy+yz+zx)/3)~3≤(x~2-xy+y~2)(y~2-yz+x~2)(z~2-zx+x~2)≤((x~2+y~2+z~2)/2)~3.本题和一些典型的不等式有一定的渊  相似文献   

8.
定理 设x,y,z∈R,且x y z=0,则对任意的n∈N,恒有2~(n 1)(x~(2n) y~(2n) z~(2n))≥(x~2 y~2 z~2)~n (1)  相似文献   

9.
第31届IMO有一道预选题为: 已知:x≥y≥z>0,x,y,z∈R。求证: x~2y/z y~2z/x z~2x/y≥x~2 y~2 z~2。 (1) 本文给出它的推广及证明。  相似文献   

10.
第46届国际数学奥林匹克第3题是:设x,y,z 为正数且 xyz≥1,求证:(x~5 x~2)/(x~5 y~2 z~2) (y~5 y~2)/(x~2 y~5 z~2) (z~5-z~2)/(x~2 y~2 z~5)≥0 ①本文给出这道题的推广与加强.命题1 设 x,y,z 为正数且 xyz≥1,k,m  相似文献   

11.
△ABC中的许多不等式,如 sinA+sinB+sinC≤3 3~(1/2)/2, cosAcosBcosC≤1/8, sinA/2+sinB/2+sinC/2≤3/2, cosA/2cosB2/cosC/2≤3 3~(1/2)/8 , sin~2A+sin~2B+sin~1C≥2 3~(1/2)sinAsinBsinC等等,均可统一于以下两个不等式(因本文将给出较一般的结果,故推导过程从略): 设x,y,z∈R,A,B,C为△ABC的内角,则 (1)x~2+y~2+z~2 ≥2(xycosC+yzcosA+zxcosB), (2)x~2+y~2+z~2 ≥2 3~(1/2)/3(xysinC+yzsinA+zxsinB), 本文将上述不等式(1)与(2)推广为: 若A,B,C,x,y,z均为实数,且A+B+C=π,n∈Z,则  相似文献   

12.
1981年12期数学通报《几种类型的不等式证明》一文中(二): 已知条件为线性方程形式的不等式证明(即条件x+y+z+…A,A为常数)。 4:若x+y+z=1,试证x~2+y~2+z~2≥1/3证明:令x=1/3-t,y=1/3-2t,z=1/3+3t(t为实数)。 x~2+y~2+z~2=[(1/3)-t]~2+[(1/3)-2t]~2+[(1/3)-3t]~2 =1/9-(2/3)t+t~2+1/9-(4/3)t+4t~2+1/9+2t+9t~2 =1/3+14t~2≥1/3 (∵t为实数)。 当t=0时,即x=y=z=1/3时,上式等号成立。  相似文献   

13.
正一、题目展示题目设x,y,z为正数,求xy+yz/x~2+y~2+z~2的最大值点评:本题是一道调研考试题,考查的是多元函数的最值问题.本题结构简洁、表达流畅,看起来很平常,实际上却丰富多彩,有很大的教学价值和研究空间.二、解法研究分析1:(从不等式角度来考虑)观察目标式的结构特征,容易想到用基本不等式来求最值.解法1:由基本不等式得x~2+1/y~2≥2(1/2)~(1/2)xy,  相似文献   

14.
题目确定方程组{x+y+z=3;①x~2+y~2+z~2=3 ②x~3+y~3+z~3=3 ③的整数解. 解由①,得x+y=3-z,④由②,得(x+y)~2-2xy+z~2=3 ③  相似文献   

15.
《中学数学教学》有奖解题擂台(82)为:设x、y、z是正实数,满足x~2 y~2 z~2=1,n是正整数,证明或否定:1/(1-x~(2n)) 1/(1-1y~(2n)) 1/(1-z~(2n))≥(n n1)~(1 1/n)(1)这个不等式是成立的,本文给出证明.证明当n=1时,由已知及均值不等式(1)式左端=1-1x2 1-1y2 1-1z2=y21 z2 z2 1x2 x  相似文献   

16.
例1.已知x,y,z∈R~ ,且满足x~2xy y~2/3=25,y~2/3 z~2=9,z~2 zx ~2=10,求xy 2yz 3zx的值. 解原方程组变形为(受启于余弦定理)从而可构造△ABC如图1.  相似文献   

17.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

18.
如果正整数a、b、c、d满足关系a~2+b~2+c~2=d~2,则a、b、c、d可分别作为长方体的长、宽、高和对角线。于是,我们说a、b、c、d是一组长方体数。长方体数可看作是勾股数的三维推广,从这一点就可说明长方体数在立体几何数学中,在第二课堂教学中均具有参考价值。长方体数是不定方程x~2+y~2+z~2=w~2的正整数解。因此,本文从讨论不定方程x~2+y~2+z~2=w~2的正整数解出发推导构造长方体数的两个法则。因不定方程x~2+y~2+z~2=w~2有正整数解。可先假定(x,y,z)=1。因当(x,y,z)=d_0>1时,由d_0~1|x~2,d_0~2|y~2,d_0~2|z~2有d_0~2|w~2,即有d_0~2|w,此时不定方程两边可同时约去d_0,便有(x/d~0,y/d_0,z/d_0)=1。当(x,y,z)=1时,显然x、y、z不可能同时为  相似文献   

19.
设 x,y,z 是任意实数,在△ABC 中,则有不等式x~2 y~2 z~2≥2xycosC 2zxcosB 2yzcosA(1)其中等号当且仅当 x:sinA=y:sinB=z:sinC 时成立.不等式(1)即三角形中著名的 Wolstenholme 不等  相似文献   

20.
本刊文[1]对方程组x y z=3 (1)x~2 y~2 z~2=3 (2)x~5 y~5 z~5=3 (3)(1973年美国奥林匹克竞赛题)给出一种简便解法.今再用代数代换给出其它简便解法.解法1 因为对三元方程 x y z=3右端等于  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号