首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
大家知道,如果x1,x2(x1≠x2)是方程ax2 bx c=0(a≠0)的两个根,则有ax12 bx1 C=0,ax22 bx2 c=0. 反之,若ax12 bx1十c=0,ax22 bx2 c=0,x1≠x2,则x1,x2是方程ax2 bx c=0(a≠0)的两个根.  相似文献   

2.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

3.
有许多竞赛题,如果用一元二次方程来解,往往会收到奇妙的效果.现举例说明. 例l 已知x1,x2是方程ax2+bx+c=0(a≠0)的两个根,且S1=x1 +x2,S2 =x12+x22,S3=x13 +x23,求aS3+bS2+cS1的值,(广东奥林匹克寒假集训试题) 解;因为x1,x2是方程ax2 +bx +c =0(a≠0)的两个根 所以:ax12+bx1+c=0 ax22+bx2+c=0 则:ax13 +bx12 +cx1 =0 ax23+bx22 +cx2 =0 所以:两式相加得:a(x13 +x23)+b(x12 +x22)+c(x1+x2)=0 即:aS3 +bS2 +cS1 =0.  相似文献   

4.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

5.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

6.
一元二次方程ax2+bx+c=0(a≠0)根的分布问题,实质上是函数 f(x)=ax2+bx+c(a≠0)的零点分布问题,即抛物线与x轴的交点问题.下面从两个视角审视一元二次方程根的分布问题:(1)方程视角(韦达定理法);(2)函数视角(图象法).设一元二次方程ax2+bx+c=0(a≠ 0)的两根为x1、x2,m、n、p、q∈R,则有:  相似文献   

7.
构造一元二次方程是一种重要的解题技巧,它可以使一些看似与方程无关的问题,用方程的知识得以简捷地解决.那么,应根据什么来构造一元二次方程呢? 一、利用一元二次方程根的意义我们知道,若x1,x2是方程ax2+bx+c=0(a≠0)的两个根,则有ax12+bx1+c=0、ax22+bx2+c=  相似文献   

8.
如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1、x2,那么x1+x2=-b/a,x1x2=c/a,反之,若x1+x2=-b/a,x1x2=c/a则x1和x2是方程ax2+bx+c=0(a≠0)的两个根,这两个性质揭示了方程的根与系数之间的必然联系,故称为根与系数的关系,这个关系是法国数学家韦达首先发现的,通常又叫做韦达定理及其逆定理,这两个定理十分重要,在历年的中考题中应用极为广泛,现分述如下:  相似文献   

9.
如果一元二次方程ax2+bx+c(a≠0)的系数和a+b+c=0,则不难发现:x=1满足方程ax2+bx+c=0,即x=1是该方程的一个根.反之,如果x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,  相似文献   

10.
<正> 性质在一元二次方程ax2+bx+c=0(a≠0)中,若a+b+c=0,则该方程必有一根为1. 证明∵a+b+C=0,且a≠0,∴a=-(b+C). ∴ax2+bx+c=-(b+c)x2+bx+C =-bx2-cx2+bx+c  相似文献   

11.
一元二次方程是初中代数的重要内容,它是一种只含有一个未知数,并且未知数的最高次数是2的整式方程.其一般形式为ax2+bx+c=0(a≠0).学习了一元二次方程根的意义、解法及其根的判别式后,灵活利用它们,可迅速地解答一些竞赛试题.一、灵活利用根的意义若x0是一元二次方程ax2+bx+c=0的根,那么ax_0~2+bx0+c=0,反之,若ax_0~2+bx0+c=0(a≠0),那么x0是一元二次方程ax2+bx+c=0的根.例1 已知a是方程x2-3x+1=0的根,则2a2-5a-2+3/a2+1的值是__.(1996年昆明市初中  相似文献   

12.
在一元二次方程ax2 +bx +c =0(a≠0)中,若两根为x1、x2,则x1+x2=-b/4,x1·x2=c/a,根与系数的这种关系又称为韦达定理.它的逆定理同样成立,即当x1+x2=b/a,x1·x2=c/a时,那么x1、x2是ax2 +bx +c=0(a≠0)的两根. 一元二次方程的根与系数的关系,综合性强,应用极为广泛. 一、确定符合条件的方程 例1 (2012年烟台卷)下列一元二次方程两实数根的和为-4的是().  相似文献   

13.
如果ax2+bx+c=0(a≠0)的两根x1、x2,那么x1+x2=-b/a,x1·x1=c/a这已为人们所熟知的韦达定理.其逆定理是:如果x1、x2满足x1+x2=-b/a,x1·x2=c/a,那么x1,x2一定是x1十x2=-b/a,x1·x2=c/a,那么x1,x2一定是方程ax2+bx+c=0(a≠0)的两根也成立.有趣的是以此导出一个重要的推论.  相似文献   

14.
一、基础知识“若实数x1、x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=-b/a,x1x2=c/a”,这一关系称之为韦达定理;其逆定理是:“若实数x1,x2满足x1+x2=-b/a,x1x2=c/a,则x1,x2是方程ax2+bx+c=a(a≠0)的两个根”,韦达定理及其逆定理在各类数学竞赛中具有广泛的应用,下面举例加以说明:二、应用举例1.用于求方程中参系数的值例1 设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等  相似文献   

15.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

16.
正一元二次方程以及二次函数是九年级的重要内容,它们之间联系紧密。我现对它们的关系加以总结、归纳,来帮助学生学习和复习。二次函数通用解析式为:y=ax2+bx+c(a、b、c为常数,a≠0),一元二次方程一般形式为ax2+bx+c=0(a、b、c为常数,a≠0),单从形成上看就很像。当二次函数的值为零时,也就是说求解二次函数与x轴交点问题时,可转化为一元二次方程来解决。一、一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c图像与x轴的交点1.△0时,方程有两个不相等的实数根x1、x2,二次函数与x轴有两个不同的交点,其  相似文献   

17.
在一元二次方程ax2+bx+c=0(a≠0、a、b、c为常数)中,当x=1时,a十b+c=0;反过来,当a+b+c=0时,就有x=1是方程ax2+bx+c=0的一个根. 由此类推到:如果am2+bm+c=0,an2+bn+c=0,且m≠n那么就知道m、n是一元  相似文献   

18.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

19.
<正>我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c (a≠0)的图象与x轴交点的横坐标.在求解相关问题时,它们之间的这种关系如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.下面举例说明.一、判断二次函数图象与x轴的交点情况  相似文献   

20.
<正>已知一元二次方程解的情况,我们可以利用根的判别式求方程中参数的取值范围.而在学习了二次函数的图象和性质后,我们更习惯采用数形结合的方法来解决问题.下面通过一例说明和比较这两种方法的运用.例题二次函数y=ax2+bx+c(a≠0),(a,b,c为常数)的图象如图1所示.(1)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围;(2)若方程ax2+bx+c=k(a≠0)有两个相等的实数根,求k的值;(3)若方程ax2+bx+c=k(a≠0)没有实数根,求k的取值范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号