首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的 毛细血管新生是骨骼肌在组织水平上适应低氧、维持和提高机能的重要机制之一。低氧和/或运动能否促进毛细血管增生,目前有关数据并不丰富且研究结论也很不一致,且急性低氧运动对毛细血管新生作用的报道极罕见。血管内皮生长因子(VEGF)是公认的最重要的靶器官上的促血管增生因子。低氧诱导因子1(HIF-1)作为核心转录因子和  相似文献   

2.
低氧运动诱导的骨骼肌血管内皮细胞生长因子(VEGF)蛋白和基因表达,及毛细血管新生反应都属于速发效应。慢性低氧下调了静息时VEGF及其受体的转录,其能否诱导毛细血管新生的研究结果并不一致。低氧训练可使骨骼肌毛细血管增生,长期低氧训练对安静时骨骼肌VEGFmRNA水平影响不大。慢性低氧和低氧训练均可抑制运动对VEGFmRNA上调的表达效应,对此负反馈现象的时间规律和机制有待进一步研究。  相似文献   

3.
低氧诱导因子-1(HIF-1)是介导细胞适应低氧状况的核转录因子。低氧训练可以上调机体HIF-1 mRNA,通过血管内皮生长因子(vEGF)和促红细胞生成素(EPO)的表达增加肌肉中的毛细血管密度和血液携氧能力,并促进糖酵解的进行,有利于运动能力的提高。  相似文献   

4.
血管内皮细胞生长因子与运动   总被引:1,自引:0,他引:1  
本文阐述了血管内皮细胞生长因子(VEGF)的生物学及其对血管生成的作用,并对相关研究对于急性运动和运动训练对骨骼肌VEGF表达影响的报道进行了综述。  相似文献   

5.
血管内皮生长因子具有促进血管内皮细胞分裂的功能,可促进血管内皮细胞的增殖和血管生成,还可增加血管的通透性,在血管的增殖和新生方面有重要作用的心脏促血管内皮生长因子(VEGF,VEGFmRNA)是组织形成因子中极其重要的一种。认识不同形式和强度的运动训练对心肌VEGF不同的影响,为合理安排运动训练提供一定的理论依据。  相似文献   

6.
低氧诱导因子-1作为低氧诱导的转录因子,通过对低氧反应基因的转录调控,在分子水平上介导了细胞乃至器官系统对低氧的反应。本文就低氧诱导因子-1在高住低训中的表达作一综述,旨在说明低氧诱导因子-1在高住低训中的重要作用。  相似文献   

7.
运动训练对大鼠海马CA3区VEGF表达的免疫组织化学研究   总被引:1,自引:0,他引:1  
目的探讨运动训练对大鼠海马CA3区VEGF表达的影响。方法采用大鼠跑台训练方式建立运动训练模型。运用免疫组织化学SABC法显示海马CA3区VEGF的表达。结果在海马CA3区内,可以明显观察到神经元间有VEGF阳性表达,其阳性表达为疲劳运动组>有氧运动组>安静对照组,各组间均存在显著性差异(P<0.01)。结论大强度疲劳运动可促使海马CA3区毛细血管显著性增生,而有氧运动大鼠海马CA3区毛细血管增生则出现下降趋势,推测不同强度运动大鼠海马CA3区VEGF的阳性表达与运动性中枢疲劳的产生有关。  相似文献   

8.
周越  苏晴 《体育科学》2011,31(7):67-72
目的:观察血管紧张素Ⅱ在废用性肌萎缩过程中对骨骼肌毛细血管重塑的影响。方法:以雌性SD大鼠为研究对象,按随机配对原则分成4组,即安静对照组(C)、安静+缓释血管紧张素Ⅱ组(CA)、悬吊组(T)、悬吊+缓释血管紧张素Ⅱ组(TA),每组8只。ATPase染色法分析骨骼肌毛细血管的变化情况,用单位面积骨骼肌毛细血管数量/肌细胞数量,即(C/F)观察毛细血管密度的变化;免疫印迹分析血管内皮生长因子(VEGF)及血管内皮生长因子2型受体(KDR)蛋白表达量的变化;免疫组化法观察VEGF及KDR在组织内的表达情况。结果:骨骼肌毛细血管染色结果显示,CA组与其他三组相比骨骼肌毛细血管密度(C/F)显著增多(P<0.05),而T组与C组相比C/F显著下降(P<0.05),TA与T组相比C/F略有升高,但没有统计学差异;免疫印迹结果显示,CA组与C组相比VEGF表达量下降,但KDR表达量上升;TA组与T组相比VEGF、KDR表达量均显著上升(P<0.05)。结论:正常情况下血管紧张素Ⅱ促进骨骼肌毛细血管的增长,在骨骼肌萎缩过程中,骨骼肌毛细血管密度下降,而血管紧张素Ⅱ对骨骼肌毛细血管密度有一定的维持作用。  相似文献   

9.
缺氧诱导因子-1对糖酵解的调节   总被引:1,自引:0,他引:1  
缺氧诱导因子(HIF-1)是一个基本的循环转录因子,当哺乳动物细胞在缺氧、红细胞生成素(EPO)和血管内皮生长因子(VEGF)或一些蛋白基因转录激活时被表达.它在维持氧稳态时起着非常重要的作用.当前的研究也为HIF-1在调节一些糖酵解酶的基因编码方面提供了证据,另外还有证据表明HIF-1可以通过抑制糖异生的过程促进糖酵解的进行.通过描述葡萄糖糖载体蛋白-1(GLUF-1)、磷酸果糖激酶(PFKL)、醛缩酶(ALDA)、磷酸甘油酸酶(PGK1)、烯醇酶(ENO1)、丙酮酸激酶(PKM)、乳酸脱氢酶(LDHA)的基因启动子作为低氧反应元件和HIF-1结合并受HIF-1激活,HIF-1在诱导糖酵解酶的基因表达过程中的作用,从而阐明了HIF-1在激活这些元件和促进糖酵解过程中是必须的.  相似文献   

10.
目的:探讨高住低训(HiLo)对大鼠骨骼肌中低氧诱导因子(HIF-1α)和血管内皮因子(VEGF)蛋白表达的影响。方法:40只SD大鼠随机分为常氧安静组(C)、常氧训练组(E)、低氧安静组(L)和高住低训组(H)。实验选择模拟2500m海拔低氧环境,以20m/min的速度,6次/周,40min/d进行跑台训练。采用HE染色法观察高住低训对大鼠骨骼肌形态影响,RT-PCR法检测,半定量分析大鼠腓肠肌HIF-1αmRNA和VEGF m RNA表达,Western Blot检测,Image分析大鼠腓肠肌HIF-1α和VEGF蛋白表达。结果:H组HIF-1αm RNA和VEGF m RNA表达量显著升高(P<0.05),H组HIF-1α和VEGF蛋白表达显著升高(P<0.05)。结论:高住低训诱导HIF-1αmRNA和VEGF m RNA表达,高住低训对大鼠腓肠肌起到保护作用,其机制可能是通过上调腓肠肌HIF-1α和VEGF蛋白表达。  相似文献   

11.
缺氧诱导因子-1(HIF-1)是由低氧等诱导细胞产生的1种转录因子,能激活许多缺氧反应性基因的表达。缺氧条件下,细胞核产生HIF-1与靶基因结合,促进该基因转录,引起一系列细胞对缺氧的反应,在促进红细胞生成、血管生成、调节血管舒缩及葡萄糖利用和促进糖酵解方面具有重要的作用,以保持机体的氧稳态。本文综述了HIF-1的结构、调节因素及其活性调节等方面的研究进展,对机体低氧适应机制进行了探讨。  相似文献   

12.
目的观察急性离心运动后低氧暴露对大鼠腓肠肌细胞膜通透性及膜骨架蛋白dystrophin的影响,探讨骨骼肌细胞膜损伤的作用机制,为高住低训提供理论依据。方法 70只雄性SD大鼠分为安静对照组、运动后常氧恢复24 h、48 h、72 h组和运动后低氧暴露24 h、48 h、72 h组。运动后低氧暴露组在离心运动后于常压低氧环境中进行恢复。采用免疫组化、Western blot、qRT-PCR等方法检测大鼠腓肠肌细胞膜完整性和dystrophin蛋白及基因表达。结果 (1)离心运动后低氧暴露,大鼠腓肠肌阳性细胞率在各时间点与常氧恢复组比较,呈现显著性上升、下降再上升的趋势;(2)急性离心运动后,dystrophin蛋白含量在各组中未出现显著性变化;(3)常氧恢复组和低氧暴露组dystrophin mRNA表达水平均显著性低于安静对照组。结论 (1)离心运动后急性低氧暴露可加剧骨骼肌细胞膜的损伤,随着低氧暴露时间的延长,机体虽然产生了短暂适应,但其恢复速率仍较常氧下恢复低;(2)膜骨架蛋白dystrophin在运动后无论是常氧恢复组还是低氧暴露组,并未发生显著性变化,且其基因表达与蛋白变化在时间上存在一定滞后,提示除mRNA转录调节之外,可能存在一种转录外调节机制;(3)"高住低训"的训练方案并不利于运动后骨骼肌的快速恢复。  相似文献   

13.
胰岛素样生长因子(IGF-Ⅰ)作为生长激素促生长作用的调节因子,与运动能力关系密切.收集了近年来关于胰岛素样生长因子(IGF-Ⅰ)在运动、低氧及低氧运动的不同应激下变化资料.发现常氧运动对血清IGF-Ⅰ影响较小,而局部组织、器官中IGF-Ⅰ有显著增加;低氧对GH-IGF-Ⅰ轴有抑制作用,且低氧运动后血清IGF-Ⅰ显著下降.但其机制还不清楚,有待进一步研究.  相似文献   

14.
目的:通过研究低氧训练大鼠心肌组织中HIF-lα和血管内皮CD34的蛋白表达情况,来初步探讨HIF-lα在促进心肌组织血管形成中的作用.方法:将健康雄性SD大鼠60只,按体重随机分为6组,运动组采用10 周递增负荷跑台运动训练,每周训练6天,运动量由第1 周的速度为15m/min、持续时间为25min 递增至第10 周速度为28m/min、持续时间为50min,低练组每周二、四、六在相当于海拔1 500m 的低氧环境中训练,并且在低氧环境中居住,低氧程度由第1 周相当于海拔1 800m 递增至第10 周相当于海拔3 600m.应用免疫组织化学、显微图象对HIF-1和CD34的阳性表达进行定性和定量分析.结果:低氧状态下,HIF-lα有大量的蛋白表达,低氧复合运动,表达更多,而CD34 蛋白表达只发生在常氧运动组和低氧训练组.结论: HIF-lα是促进心肌组织血管新生的一种重要因子,但须结合运动才能产生积极的作用.  相似文献   

15.
毕业  陈文鹤 《体育科学》2008,28(3):58-62
目的:与血管形成和血管结构功能完整性有关的重要因子包括VEGF及其受体KDR、Ang-1、bFGF等.探讨大鼠在不同强度耐力运动下骨骼肌血管形成相关细胞因子基因在不同类型骨骼肌中的表达变化规律,以期揭示这些细胞因子在运动骨骼肌血管形成、维持骨骼肌结构和功能的机制;方法:采用不同运动负荷训练方案建立大鼠的运动模型,应用逆转录聚合酶链反应及计算机图像分析等方法,研究不同类型骨骼肌中血管形成与功能维持有关的因子基因表达;结果:耐力运动能使不同类型骨骼肌中与血管形成相关因子的基因发生变化,变化规律与运动强度有关;结论:耐力运动对不同类型骨骼肌中4种基因表达的影响与骨骼肌类型有关,但目前仍缺乏直接的分子学证据.  相似文献   

16.
选用健康雄性SD大鼠144只,采用ELISA法,研究短期低氧、不同强度常氧运动和高住低练对大鼠腓肠肌VEGF表达的影响。结果表明,低氧和常氧运动诱导的骨骼肌VEGF表达属早期效应,长时间中等强度的运动比间歇性的高强度运动诱导更多的VEGF表达,高住低练削弱了长时间中等强度运动诱导的VEGF表达。  相似文献   

17.
日益增多的研究表明,长期适宜的运动可以提高人或动物的学习记忆能力,但其机制尚未明确.环磷酸腺苷反应元件结合蛋白(CREB)作为一种重要的核转录因子,在学习记忆中有着重要的作用.用文献综述法,从运动对学习记忆的影响、CREB与学习记忆的关系、运动对CREB的影响及其机制对学习记忆的意义等多个方面,分析并探讨了运动提高学习记忆能力与转录因子CREB作用的关系,试图在分子水平上为运动促进学习记忆能力提高提供一个证据.  相似文献   

18.
低氧训练对大鼠肾皮质HIF-1α、VEGF基因表达的影响   总被引:1,自引:0,他引:1  
目的:探讨不同模式低氧耐力训练对大鼠肾皮质HIF-1α、VEGF基因表达的影响.方法:6周龄雄性SD大鼠90只,经过适应性训练后筛选出60只,随机分为6组:常氧安静组、低氧安静组、低住低练组、高住低练组、低住高练组.采用常压低氧舱以13.6%的氧浓度(相当于海拔3 500 m的氧浓度)进行低氧训练,低氧训练强度为30 m/min,常氧训练强度为35 m/min,持续运动1 h/d,5天/周,训练4周.安静组4周末、训练组最后一次训练恢复24 h后取材.采用实时荧光定量PCR技术测试大鼠肾皮质HIF-1α、VEGF mRNA水平的变化.结果:高住高练组大鼠肾皮质HIF-1α、VEGF mRNA表达较低住低练组均有非常显著性上调(P<0.01);高住低练组、低住高练组大鼠肾皮质HIE-1α、VEGF mRNA表达与低住低练组相比有所升高,但无显著性差异;高住高练组HIF-1α与VEGF表达呈高度正相关,相关系数为0.798(P<0.05).结论:高住高练比高住低练、低住高练更能促进肾皮质HIF-1α、VEGF mRNA表达;高住高练肾皮质HIF-1α基因表达对VEGF转录有一定促进作用.  相似文献   

19.
目的:探讨低氧、运动对骨骼肌蛋白质合成的作用.方法:2月龄雄性SD大鼠40只随机分为对照组、低氧组、运动组、低氧运动组,实验28天后取材测试.结果:(1)运动组AR蛋白表达量、AR活性与骨骼肌总蛋白质含量比对照组显著升高;(2)低氧组骨骼肌睾酮含量、AR蛋白表达量、IGF-1mRNA含量以及肌纤维横截面积较对照组显著降低;AR活性、骨骼肌蛋白质含量较对照组显著升高;(3)低氧运动组AR蛋白表达量、AR活性和骨骼肌总蛋白含量比运动组显著下降.结论:(1)运动后进行低氧暴露比单纯运动更能通过AR含量-AR活性水平抑制蛋白质合成;(2)低氧、运动或低氧运动通过睾酮调节AR数量及活性,最终影响骨骼肌蛋白含量;(3)低氧、运动或低氧运动可通过调节AR转录活性影响IGF-1mRNA表达,最终调节骨骼肌蛋白质合成.  相似文献   

20.
陈艳梅  郝选明 《体育学刊》2011,18(3):140-144
NF-κB(核转录因子-kappaB)信号通路在机体的免疫应答、细胞增殖、凋亡和生长发育中发挥重要作用。运动训练过程中机体产生的活性氧以及运动性肌肉损伤激活了NF-κB信号通路,对NF-κB活性的影响与运动训练的持续时间、频率和强度有关。急性剧烈运动导致了NF-κB活性一过性提高;长期有规律的运动训练能够降低由于衰老和慢性炎症反应而上调的NF-κB的活性;长期剧烈的运动训练导致了NF-κB的慢性持续激活,使通路上各指标的表达发生变化,细胞核中聚集NF-κB的亚基p65浓度增多,转录靶基因,从而使炎性基因的表达大幅度升高,一方面放大机体固有免疫系统对抗运动性应激,另一方面参与了骨骼肌运动性慢性炎症的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号