首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min?1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min?1 with lower peak power produced at 80 revs · min?1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min?1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min?1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min?1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min?1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min?1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min?1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.  相似文献   

2.
The purpose of this study was to determine the effectiveness of a 4-week running sprint interval training protocol to improve both aerobic and anaerobic fitness in middle-aged adults (40–50 years) as well as compare the adaptations to younger adults (20–30 years). Twenty-eight inactive participants – 14 young 20–30-year-olds (n = 7 males) and 14 middle-aged 40–50-year-olds (n = 5 males) – completed 4 weeks of running sprint interval training (4 to 6, 30-s “all-out” sprints on a curved, self-propelled treadmill separated by 4 min active recovery performed 3 times per week). Before and after training, all participants were assessed for maximal oxygen consumption (VO2max), 2000 m time trial performance, and anaerobic performance on a single 30-s sprint. There were no interactions between group and time for any tested variable, although training improved relative VO2max (young = 3.9, middle-aged = 5.2%; P < 0.04), time trial performance (young = 5.9, middle-aged = 8.2%; P < 0.001), peak sprint speed (young = 9.3, middle-aged = 2.2%; P < 0.001), and average sprint speed (young = 6.8, middle-aged = 11.6%; P < 0.001) in both young and middle-aged groups from pre- to post-training on the 30-s sprint test. The current study demonstrates that a 4-week running sprint interval training programme is equally effective at improving aerobic and anaerobic fitness in younger and middle-aged adults.  相似文献   

3.
The purpose of this study was to explore the relationships between mechanical power, thrust power, propelling efficiency and sprint performance in elite swimmers. Mechanical power was measured in 12 elite sprint male swimmers: (1) in the laboratory, by using a whole-body swimming ergometer (W'TOT) and (2) in the pool, by measuring full tethered swimming force (FT) and maximal swimming velocity (Vmax): W'T = FT · Vmax. Propelling efficiency (ηP) was estimated based on the “paddle wheel model” at Vmax. Vmax was 2.17 ± 0.06 m · s?1, ηP was 0.39 ± 0.02, W'T was 374 ± 62 W and W'TOT was 941 ± 92 W. Vmax was better related to W'T (useful power output: R = 0.943, P < 0.001) than to W'TOT (total power output: R = 0.744, P < 0.01) and this confirms the use of the full tethered test as a valid test to assess power propulsion in sprinters and to estimate swimming performance. The ratio W'T/W'TOT (0.40 ± 0.04) represents the fraction of total mechanical power that can be utilised in water (e.g., ηP) and was indeed the same as that estimated based on the “paddle wheel model”; this supports the use of this model to estimate ηP in swimming.  相似文献   

4.
Basketball tests assessing dribbling speed predicated on total performance times are influenced by sprinting speed. This study examines an approach termed Dribble Deficit to counter this limitation by examining the relationships between sprinting and dribbling speed during linear and change-of-direction (COD) tasks measured using total performance time and Dribble Deficit. Ten semi-professional basketball players completed linear sprints and COD sprints with and without dribbling. Dribble Deficit was calculated as the difference between the best time for each dribbling trial and corresponding non-dribbling trial for linear and COD sprints. Large to very large significant relationships (P < 0.05) were evident between linear sprint and dribble times (R = 0.64–0.77, R2 = 0.41–0.59), and between COD sprint and dribble times (R = 0.88, R2 = 0.77). Conversely, trivial-small relationships were evident between linear sprint time and linear Dribble Deficit (R = 0.01–0.15, R2 = 0.00–0.02). A non-significant, moderate, negative relationship was observed between COD sprint time and COD Dribble Deficit (R = ?0.45, R2 = 0.20). These findings indicate Dribble Deficit provides a more isolated measure of dribbling speed than tests using total performance times. Basketball practitioners may use Dribble Deficit to measure dribbling speed independent of sprint speed in test batteries.  相似文献   

5.
Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m2) participated in 3 sprint interval training sessions separated by 3 to 7 days between each session during a period of 1 month. The 1st visit was familiarization to 6 cycling sprints; the 2nd and 3rd visits involved a warm-up followed by 6 30-s cycling sprints. Each sprint was followed by 4 min of passive (resting still on the ergometer) or active recovery (pedaling at 1.1 W/kg). The same recovery was used within each visit, and recovery type was randomized between visits. Results: Active recovery resulted in a 0.6 W/kg lower peak power output in the second sprint (95% confidence interval [CI] [ ? 0.2, ? 0.8 W/kg], effect size = 0.50, p < .01) and a 0.4 W/kg greater average power output in the 5th and 6th sprints (95% CI [+0.2,+0.6 W/kg], effect size = 0.50, p < .01) compared with passive recovery. There was little difference between fatigue index, total work, or accumulated work between the 2 recovery conditions. Conclusions: Passive recovery is beneficial when only 2 sprints are completed, whereas active recovery better maintains average power output compared with passive recovery when several sprints are performed sequentially (partial eta squared between conditions for multiple sprints = .38).  相似文献   

6.
Abstract

The aim of this study was to determine sprint profiles of professional female soccer players and evaluate how various speed thresholds impact those outcomes. Seventy-one professional players competing in full matches were assessed repeatedly during 12 regular season matches using a Global Positioning System (GPS). Locomotion ≥18 km · h?1 was defined as sprinting and each event was classified into: Zone 1: 18.0–20.9 km· h?1; Zone 2: 21.0–22.9 km · h?1; Zone 3: 23.0–24.9 km · h?1 and Zone 4: >25 km · h?1. Outcomes included: duration (s), distance (m), maximum speed (km · h?1), duration since previous sprint (min) and proportion of total sprint distance. In total 5,019 events were analysed from 139 player-matches. Mean sprint duration, distance, maximum speed and time between sprints were 2.3 ± 1.5 s, 15.1 ± 9.4 m, 21.8 ± 2.3 km· h?1, and 2.5 ± 2.5 min, respectively. Mean sprint distances were 657 ± 157, 447 ± 185, and 545 ± 217 m for forwards, midfielders and defenders, respectively (P ≤ 0.046). Midfielders had shorter sprint duration (P = 0.023), distance (P ≤ 0.003) and maximum speed (P < 0.001), whereas forwards performed more sprints per match (43 ± 10) than midfielders (31 ± 11) and defenders (36 ± 12) (P ≤ 0.016). Forty-five percent, 29%, 15%, and 11% of sprints occurred in sprint Zones 1, 2, 3 and 4, respectively. This group of professional female soccer players covered 5.3 ± 2.0% of total distance ≥18 km · h?1 with positional differences and percent decrements distinct from other previously identified elite players. These data should guide the development of high intensity and sprint thresholds for elite-standard female soccer players.  相似文献   

7.
Abstract

In this study, we investigated the age-related differences in repeated-sprint ability and blood lactate responses in 134 youth football players. Players from the development programme of a professional club were grouped according to their respective under-age team (U-11 to U-18). Following familiarization, the participants performed a repeated-sprint ability test [6 × 30-m sprints 30 s apart, with active recovery (2.0–2.2 m · s?1) between sprints]. The test variables were total time, percent sprint decrement, and post-test peak lactate concentration. Total time improved from the U-11 to U-15 age groups (range 33.15 ± 1.84 vs. 27.25 ± 0.82 s), whereas no further significant improvements were evident from U-15 to U-18. No significant differences in percent sprint decrement were reported among groups (range 4.0 ± 1.0% to 5.5 ± 2.1%). Post-test peak lactate increased from one age group to the next (range 7.3 ± 1.8 to 12.6 ± 1.6 mmol · l?1), but remained constant when adjusted for age-related difference in body mass. Peak lactate concentration was moderately correlated with sprint time (r = 0.70, P > 0.001). Our results suggest that performance in repeated-sprint ability improves during maturation of highly trained youth football players, although a plateau occurs from 15 years of age. In contrast to expectations based on previous suggestions, percent sprint decrement during repeated sprints did not deteriorate with age.  相似文献   

8.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

9.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

10.
Abstract

Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g · kg?1 body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15–20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 ± 2.2% vs. 23.1 ± 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 ± 3.1% and 21.2 ± 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.  相似文献   

11.
ABSTRACT

The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min?1) and velocity (km · h?1) were recorded for the whole lap and during ascent and descent sections. One-way repeated measure ANOVA was used to determine significant differences. Results revealed no significant main effects for any variables by wheel size during all trials, with the exception of cadence during the descent (F(2, 16) = 8.96; P = .002; P2 = .53). Post hoc comparisons revealed differences lay between the 26″ and 29″ wheels (P = .02). The findings indicate that wheel size does not significantly influence performance during cross-country when ridden by trained mountain bikers, and that wheel choice is likely due to personal choice or sponsorship commitments.  相似文献   

12.
This investigation assessed whether prior heavy resistance exercise would improve the repeated sprint performance of 16 trained youth soccer players (Age 17.05 ± 0.65 years; height 182.6 ± 8.9 cm; body mass 77.8 ± 8.2 kg). In session 1, individual 1 repetition max was measured utilising a squat movement. In sessions 2 and 3, participants performed a running-based repeated anaerobic sprint test with and without prior heavy resistance exercise of 91% of their 1 repetition max. Times were recorded for each of the 6 sprints performed in the repeated sprint test and summed to provide total time. T-tests compared the two exercise conditions via differences in corresponding sprint times and total time. Analysis revealed significantly reduced total time with use of heavy resistance exercise (33.48 (±1.27) vs. 33.59 (±1.27); P = 0.01). Sprints 1 (P = 0.05) and 2 (P = 0.02) were also faster in the heavy resistance exercise condition (5.09 (±0.16) vs. 5.11 (±0.16) and 5.36 (±0.24) vs. 5.45 (±0.26) seconds respectively) although no other differences were shown. Findings demonstrate improved sprint times of trained adolescent soccer players after heavy resistance exercise although benefits appear not as sustained as in adult participants.  相似文献   

13.
Abstract

The aim of this study was to assess the validity (Study 1) and reliability (Study 2) of a novel intermittent running test (Carminatti's test) for physiological assessment of soccer players. In Study 1, 28 players performed Carminatti's test, a repeated sprint ability test, and an intermittent treadmill test. In Study 2, 24 players performed Carminatti's test twice within 72 h to determine test–retest reliability. Carminatti's test required the participants to complete repeated bouts of 5 × 12 s shuttle running at progressively faster speeds until volitional exhaustion. The 12 s bouts were separated by 6 s recovery periods, making each stage 90 s in duration. The initial running distance was set at 15 m and was increased by 1 m at each stage (90 s). The repeated sprint ability test required the participants to perform 7 × 34.2 m maximal effort sprints separated by 25 s recovery. During the intermittent treadmill test, the initial velocity of 9.0 km · h?1 was increased by 1.2 km · h?1 every 3 min until volitional exhaustion. No significant difference (P > 0.05) was observed between Carminatti's test peak running velocity and speed at VO2max (v-VO2max). Peak running velocity in Carminatti's test was strongly correlated with v-VO2max (r = 0.74, P < 0.01), and highly associated with velocity at the onset of blood lactate accumulation (r = 0.63, P < 0.01). Mean sprint time was strongly associated with peak running velocity in Carminatti's test (r = ?0.71, P < 0.01). The intraclass correlation was 0.94 with a coefficient of variation of 1.4%. In conclusion, Carminatti's test appears to be avalid and reliable measure of physical fitness and of the ability to perform intermittent high-intensity exercise in soccer players.  相似文献   

14.
Abstract

The aim of this study was to assess the extent to which measures derived from the new FIFA referees’ fitness tests can be used to monitor a referee's match-related physical capacity. Match-analysis data were collected (Prozone®, Leeds, UK) from 17 soccer referees for 5.0 (s = 1.7) FA Premier League matches per referee during the first 4 months of the 2007–08 season. Physical match performance categories included total distance covered, high-intensity running distance (speed >5.5 m · s?1), and sprinting distance (>7.0 m · s?1). The two tests were a 6 × 40-m sprint test and a 150-m interval test. Heart rate demand was correlated with total match distance covered (r = ?0.70, P = 0.002) and high-intensity running (r = ?0.57, P = 0.018) in the interval test. The fastest 40-m sprint was related to total distance covered (r = ?0.69, P = 0.002), high-intensity running (r = ?0.76, P < 0.001), and sprinting distance (r = ?0.75, P = 0.001), while mean time for the 40-m sprints was related to total distance covered (r = ?0.70, P = 0.002), high-intensity running (r = ?0.77, P < 0.001), and sprinting distance (r = ?0.77, P < 0.001). The referees who recorded the best interval-test heart rate demand and fastest 40-m time produced the best physical match performances. However, only the sprint test and in particular the fastest 40-m time had appropriate construct validity for the physical assessment of soccer referees.  相似文献   

15.
This study aimed to identify attributes that discriminate selected from non-selected players and predict selection into a rugby league development programme in older adolescent players. Anthropometric, performance and psychological attributes were measured in under-16 (N = 100) and under-18 (N = 60) rugby league players trialling for selection into a development programme with a professional Australian club. Sprint times (P < 0.001), predicted VO2max (P = 0.002) and push-ups1 min (P = 0.004) were superior in selected under-16 players, and sprint times (P ≤ 0.045), push-ups1 min (P < 0.001) and chin-ups1 min (P = 0.013) were superior in selected under-18 players. Further, 10-m sprint (β = ?7.706, standard error [SE] = 2.412), VO2max (β = 0.168, SE = 0.052) and body mass (β = 0.071, SE = 0.023) significantly predicted selection (R2 = 0.339) in under-16 players, while push-ups1 min (β = 0.564, SE = 0.250), 10-m sprint (β = ?68.477, SE = 28.107), body mass (β = 0.360, SE = 0.155) and chronological age (β = ?3.577, SE = 1.720) significantly predicted selection (R2 = 0.894) in under-18 players. These findings emphasise the importance of performance attributes in junior rugby league and indicate talent identification test batteries should be age-specific in older adolescent players.  相似文献   

16.
Abstract

The present study aimed to analyse the influence of speed and power abilities in goal situations in professional football.

During the second half of the season 2007/08, videos of 360 goals in the first German national league were analysed by visual inspection. For the assisting and the scoring player the situations immediately preceding the goal were evaluated. The observed actions were categorised as: no powerful action, rotation (around the body's centre-line), straight sprint, change-in-direction sprint, jump, or a combination of those categories.

Two hundred and ninety-eight (83%) goals were preceded by at least one powerful action of the scoring or the assisting player. Most actions for the scoring player were straight sprints (n = 161, 45% of all analysed goals, P < 0.001) followed by jumps (n = 57, 16%), rotations and change-in-direction sprints (n = 22, 6% each). Most sprints were conducted without an opponent (n = 109, P < 0.001) and without the ball (n = 121, P < 0.001). Similarly, for the assisting player the most frequent action was a straight sprint (n = 137, P < 0.001) followed by rotations (n = 28), jumps (n = 22) and change-in-direction sprints (n = 18). The straight sprints were mostly conducted with the ball (n = 93, P = 0.003).

In conclusion, straight sprinting is the most frequent action in goal situations. Power and speed abilities are important within decisive situations in professional football and, thus, should be included in fitness testing and training.  相似文献   

17.
This study aimed to investigate the fatigue effects induced by a futsal-specific protocol (FIRP) on sprint performance and the kinematics of the lower limbs. Twenty-one futsal players participated in this study and performed a protocol to simulate the futsal demands. At pre-protocol, half-time and post-protocol, the athletes performed 10-m sprints that were recorded for kinematic analysis. Continuous relative phase (CRP) was calculated to assess the inter-segmental coordination. In addition, vertical (KVERT) and leg (KLEG) stiffness were calculated. Analysis of variance (ANOVA) for repeated measures was used (P < 0.05). The main results showed that sprint time increased (P < 0.01) post-protocol when compared to pre- and half-time conditions. Lower values of the step rate (P = 0.01) and higher values of the leg angular velocity (P = 0.02) were verified at the end of the FIRP. The CRP of thigh–leg and leg–foot and the stiffness did not change over the protocol. In addition, the high correlation of CRP between the conditions revealed no changes in coordination pattern. We concluded that futsal related-fatigue induced a decrement on sprint time, changing the kinematics of the lower limbs (decreasing step rate and increasing leg angular velocity). However, neither stiffness nor intersegment coordination during sprints was affected by fatigue.  相似文献   

18.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

19.
Abstract

The aim of the present study was to examine, in highly trained young soccer players, the mechanical horizontal determinants of acceleration (Acc) and maximal sprinting speed (MSS). Eighty-six players (14.1 ± 2.4 year) performed a 40-m sprint to assess Acc and MSS. Speed was measured with a 100-Hz radar, and theoretical maximal velocity (V0), horizontal force (F0) and horizontal power (Pmax) were calculated. Within each age group, players were classified as high Acc/fast MSS (>2% faster than group mean), medium (between ?2% and +2%), and low/slow (>2% slower). Acc and MSS were very largely correlated (?0.79; 90% confidence limit [?0.85; ?0.71]). The determinants (multiple regression r2 = 0.84 [0.78; 0.89]) of Acc were V0 (partial r: 0.80 [0.72; 0.86]) and F0 (0.57 [0.44; 0.68]); those of MSS (r2 = 0.96 [0.94; 0.97]) were V0 (0.96 [0.94; 0.97]) and Pmax (0.73 [0.63; ?0.80]). High/Med have likely greater F0 (Cohen’s d: +0.8 [0.0; 1.5]), V0 (+0.6 [?0.1; 1.3]) and Pmax (+0.9 [0.2; 1.7]) than Low/Med. High/Fast have an almost certainly faster V0 (+2.1 [1.5; 2.7]) and a likely greater Pmax (+0.6 [?0.1; 1.3]) than High/Med, with no clear differences in F0 (?0.0 [?0.7; 0.6]). Speed may be a generic quality, but the mechanical horizontal determinants of Acc and MSS differ. While maximal speed training may improve both Acc and MSS, improving horizontal force production capability may be efficient to enhance sprinting performance over short distances.  相似文献   

20.
This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η2 ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between ‘fast’ vs. ‘slow’ sub-groups (η2 ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the ‘over-speed’ condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号