首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
Most assessments of segmental sequencing in throwing, striking or kicking have indicated a proximal-to-distal sequencing of end-point linear speeds, joint angular velocities, segment angular velocities and resultant joint moments. However, the role of long-axis rotations has not been adequately quantified and located in the proximal-to-distal sequence. The timing and importance of upper arm internal-external rotation and pronation-supination in the development of racquet head speed have been examined in the tennis serve and squash forehand drive and considered in relation to conventional concepts of proximal-to-distal sequencing. Both long-axis rotations reached their peak angular speeds late in both strokes, typically after shoulder flexion-extension, shoulder abduction-adduction and elbow extension. These results clarify and confirm the importance of upper limb long-axis rotations in the production of racquet head speed. It appears that traditional proximal-to-distal sequencing concepts are inadequate to describe accurately the complexity of the tennis serve or squash forehand drive. It is essential to consider upper arm and forearm longitudinal axis rotations in explaining the mechanics of these movements and in developing coaching emphases, strength training schedules and injury prevention programmes.  相似文献   

2.
This study identified and compared the full body kinematics of different skill levels in the forehand groundstroke when balls were hit cross court and down the line. Forty-three three-dimensional retroreflective marker trajectories of six elite and seven high-performance players were recorded using an eight-camera 400 Hz, Vicon motion analysis system. The six highest horizontal velocity forehands with reliable kinematics of all participants were analysed for each specific situation (a total of 156 analysed shots). Significant differences (p < 0.01) and large effect sizes were observed between elite and high-performance players in linear velocity of the shoulder (2.0 vs. 1.2 m/s), angular velocity of the pelvis (295 vs. 168 degrees/s), and angular velocity of the upper trunk (453 vs. 292 degrees/s) at impact. The elite group showed a tendency towards higher racquet velocities at impact (p < 0.05). No significant differences were found in angular displacement of the racquet, hip alignment, or shoulder alignment at the completion of the backswing; nor did angular displacement vary significantly at impact. Irrespective of the group, different shoulder, hip, and racquet angles were found at impact, depending on the situation. The results should assist coaches when striving to improve their players' forehand.  相似文献   

3.
The purpose of this study was to measure the contributions of the motions of body segments and joints to racquet head speed during the tennis serve. Nine experienced male players were studied using three-dimensional film analysis. Upper arm twist orientations were calculated with two alternative methods using joint centres and skin-attached markers. The results showed that skin-attached markers could not be used to calculate accurate upper arm twist orientations due to skin movement, and that the use of joint centres produced errors of more than 20 degrees in the upper arm twist orientation when the computed elbow flexion/extension angle exceeded 135 degrees in the final 0.03 s before impact. When there were large errors in the upper arm twist orientation, it was impossible to obtain accurate data for shoulder or elbow joint rotations about any axis. Considering only the contributors that could be measured within our standards of acceptable error, the approximate sequential order of main contributors to racquet speed between maximum knee flexion and impact was: shoulder external rotation, wrist extension, twist rotation of the lower trunk, twist rotation of the upper trunk relative to the lower trunk, shoulder abduction, elbow extension, ulnar deviation rotation, a second twist rotation of the upper trunk relative to the lower trunk, and wrist flexion. The elbow extension and wrist flexion contributions were especially large. Forearm pronation made a brief negative contribution. Computed contributions of shoulder internal rotation, elbow extension and forearm pronation within the final 0.03 s before impact were questionable due to the large degree of elbow extension. Near impact, the combined contribution of shoulder flexion/extension and abduction/adduction rotations to racquet speed was negligible.  相似文献   

4.
Consecutive proximal-to-distal sequencing of motion is considered to be integral for generating high velocity of distal segments in many sports. Simultaneous usage of proximal and distal segments as seen in martial arts is by far less well investigated. Therefore, the aim of the study was to characterise and differentiate the concepts of consecutive (CSM) and simultaneous (SSM) sequence of motion in straight reverse punches as practised in Practical Wing Chun. Four experienced martial artists succeeded an eligibility test for technical proficiency in both concepts and performed a total number of 20 straight punches per concept. Eight MX13 Vicon cameras (250 fps) and Visual3D were used for motion capture and analyses. Both motion concepts showed proximal-to-distal sequencing of maximal joint velocities but, in SSM, this was coupled with simultaneous initiation. Key characteristics were: high pelvis momentum and backswing of shoulder and elbow (CSM); and importance of shoulder involvement (SSM). Different ranges of motion, timing aspects and achieved maximal angular velocities distinguished both concepts, which led to differences (p < 0.05) in fist velocity at contact, execution time, distance and horizontal shift of the centre of mass. Proper application of both concepts depends on the environmental setting, situational requirements and individual fighting style.  相似文献   

5.
This study identified and compared the full body kinematics of different skill levels in the forehand groundstroke when balls were hit cross court and down the line. Forty-three three-dimensional retro-reflective marker trajectories of six elite and seven high-performance players were recorded using an eight-camera 400 Hz, Vicon motion analysis system. The six highest horizontal velocity forehands with reliable kinematics of all participants were analysed for each specific situation (a total of 156 analysed shots). Significant differences (p < 0.01) and large effect sizes were observed between elite and high-performance players in linear velocity of the shoulder (2.0 vs. 1.2 m/s), angular velocity of the pelvis (295 vs. 168 °/s), and angular velocity of the upper trunk (453 vs. 292 °/s) at impact. The elite group showed a tendency towards higher racquet velocities at impact (p < 0.05). No significant differences were found in angular displacement of the racquet, hip alignment, or shoulder alignment at the completion of the backswing; nor did angular displacement vary significantly at impact. Irrespective of the group, different shoulder, hip, and racquet angles were found at impact, depending on the situation. The results should assist coaches when striving to improve their players' forehand.  相似文献   

6.
Attaining high speed of the stick head and consequently of the ball is essential for successful performance of the drag flick in field hockey, but the coordination pattern used to maximise stick head speed is unknown. The kinematics of the drag flick was studied in ten elite hockey players who performed twenty shots each towards a target located 1.5 m high. A 150 Hz active marker motion analysis system was used, alongside two force plates to detect foot touchdown. Angular velocity and contribution to stick endpoint speed of upper body joints were analysed. Repeated measures ANOVA was used to compare timing of onset and peak angular velocities between joints. Participants used a kinematic pattern that was close to a proximal-to-distal sequence. Trunk axial rotation and lateral rotation towards the target, right wrist flexion and left wrist extension were the main contributors to stick endpoint speed. Coaches should emphasise trunk rotations and wrist flexion and extension movements for maximising stick head speed. Given the high level of the participants in this study, the coordination of joints motions, as reported here, can serve as a guideline for drag flick training.  相似文献   

7.
Fly-fishing is a popular form of recreation. Recent evidence has associated overhand fly-casting movements with upper extremity pain. However, little research exists on the motions and coordination common to fly-casting. The aim of this study was to establish upper extremity kinematic trends of fly-casting while casting greater line lengths. It was hypothesized that kinematic casting parameters would increase and time between peak angular velocities would decrease with greater line length. Eighteen males participated in the study. Three-dimensional motion capture was conducted to calculate shoulder, elbow, and wrist kinematics during casting conditions of 6.1, 12.2, 18.3, and 24.4 m of line. Multiple analyses of variance were used to assess the condition effect of line length on the kinematic variables (P = 0.05). Overall, total range of movement increased with increasing length of line cast. Peak angular velocity exhibited a proximal-to-distal trend: peak shoulder internal rotation followed by elbow extension, then wrist ulnar deviation. Time between peak shoulder and elbow angular velocities increased significantly as line length increased. Our findings indicate that specific changes in total range of movement accommodate the demands of casting greater lengths of line. Also, joint velocity coordination patterns of fly-casting appear to follow a proximal-to-distal pattern. These findings represent an initial foundation for connections between kinematics and upper extremity pain reported by fly-fisherman.  相似文献   

8.
Fly-fishing is a popular form of recreation. Recent evidence has associated overhand fly-casting movements with upper extremity pain. However, little research exists on the motions and coordination common to fly-casting. The aim of this study was to establish upper extremity kinematic trends of fly-casting while casting greater line lengths. It was hypothesized that kinematic casting parameters would increase and time between peak angular velocities would decrease with greater line length. Eighteen males participated in the study. Three-dimensional motion capture was conducted to calculate shoulder, elbow, and wrist kinematics during casting conditions of 6.1, 12.2, 18.3, and 24.4 m of line. Multiple analyses of variance were used to assess the condition effect of line length on the kinematic variables (P = 0.05). Overall, total range of movement increased with increasing length of line cast. Peak angular velocity exhibited a proximal-to-distal trend: peak shoulder internal rotation followed by elbow extension, then wrist ulnar deviation. Time between peak shoulder and elbow angular velocities increased significantly as line length increased. Our findings indicate that specific changes in total range of movement accommodate the demands of casting greater lengths of line. Also, joint velocity coordination patterns of fly-casting appear to follow a proximal-to-distal pattern. These findings represent an initial foundation for connections between kinematics and upper extremity pain reported by fly-fisherman.  相似文献   

9.
The purpose of this study was to quantify ranges and speeds of movement, from shoulder external rotation to ball impact, in the tennis service actions of world class players. Two electronically synchronised 200 Hz video cameras were used to record 20 tennis players during singles competition at the Sydney 2000 Olympic games. Three-dimensional motion of 20 landmarks on each player and racquet were manually digitized. Based upon the mean values for this group, the elbow flexed to 104 degrees and the upper arm rotated into 172 degrees of shoulder external rotation as the front knee extended. From this cocked position, there was a rapid sequence of segment rotations. The order of maximum angular velocities was trunk tilt (280 degrees/s), upper torso rotation (870 degrees/s), pelvis rotation (440 degrees/s), elbow extension (1510 degrees/s), wrist flexion (1950 degrees/s), and shoulder internal rotation. Shoulder internal rotation was greater for males (2420 degrees/s) than females (1370 degrees/s), which may be related to the faster ball velocity produced by the males (50.8 m/s) than the females (41.5 m/s). Although both genders produced segment rotations in the same order, maximum upper torso velocity occurred earlier for females (0.075 s before impact) than for males (0.058 s). At impact, the trunk was tilted 48 degrees above horizontal, the arm was abducted 101 degrees and the elbow, wrist, and lead knee were slightly flexed. Male and female players should be trained to develop the kinematics measured in this study in order to produce effective high-velocity serves.  相似文献   

10.
ABSTRACT

Knowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke. The highly skilled group had significantly (p < 0.05) larger forearm pronation/supination range-of-motion and wrist extension angles at impact than the less-skilled. The less-skilled group had a significantly more “open” racket face and slower racket velocities at impact than the highly skilled. Rates of shoulder internal rotation, forearm pronation, elbow extension and wrist flexion at impact were greater in the drive stroke than in the other strokes. The position of the racket at impact in the volley was significantly more anterior to the shoulder than in the other strokes, with a smaller trunk rotation angular velocity. Players used less shoulder internal/external rotation, forearm pronation/supination, elbow and wrist flexion/extension ranges-of-motions and angular velocities at impact in the drop stroke than in the other strokes. These findings provide useful insights into the technical differences that separate highly skilled from less-skilled players and provide a kinematic distinction between stroke types.  相似文献   

11.
Abstract

The topspin tennis forehand drive has become a feature of modern game; yet, as compared to the serve, there has been little research analysing its kinematics. This is surprising given that there is considerably more variation in the execution of the topspin forehand. Our study is the first to examine the amplitude of upper limb joint rotations that produce topspin in the forehand drives of 14 male competitive tennis players using video-based motion analysis. Humerothoracic abduction (-)/adduction (+), extension (-) /flexion (+), and external (-)/internal (+) rotation, elbow extension (-) /flexion (+) and forearm supination (-)/pronation (+), wrist extension (-)/flexion (+) and ulnar (-)/radial (-) deviation were computed. Our findings revealed that the generation of topspin demanded more humeral extension and forearm pronation but less humeral internal rotation angular displacement during the forwardswing. The follow-through phase of the topspin shot was characterised by greater humeral internal rotation and forearm pronation, and reduced humeral horizontal adduction when compared to the flat shot. This study provides practitioners with a better understanding of the upper limb kinematics associated with the topspin tennis forehand drive production to help guide skill acquisition interventions and physical training.  相似文献   

12.
Tennis     
The study investigated differences in the one‐ (SH) and two‐handed (DH) backhands when hit flat, across‐court (AC) and down‐the‐line (DL), and with heavy topspin DL (TDL). The ability to disguise each of these backhands when hitting the above strokes was also assessed. Eighteen college‐level male tennis players, identified as having a high performance topspin SH (n = 6) or DH (n = 12) backhand drive, participated in the study. Players were required to hit three AC, DL and TDL backhands from the baseline with their preferred technique, while being filmed with two high‐speed video cameras operating at 200 Hz. The highest horizontal velocity backhand for each stroke was analysed. Results indicated that the sequential coordination of five body segments (hips, shoulder, upper arm, forearm, and hand/racquet rotations) was required for the execution of the SH stroke. The same number of segments were generally coordinated in the DH stroke (hips, shoulders, and varying degrees of upper arm and forearm rotations followed by hand/racquet movement). Mature players produced comparable racquet horizontal velocities 0.005 s prior to impact using either the SH or DH backhand technique. The SH backhand was characterised by a more rotated shoulder alignment than the DH stroke (SH: 119.1°; DH: 83.4°) at the completion of the backswing. At impact the ball was impacted further in front (SH: 0.59 m; DH: 0.40 m) and a similar distance to the side of the body (SH: 0.75 m; DH: 0.70 m). Players using the DH backhand technique delayed the horizontal acceleration of the racquet towards the ball (SH: 0.13 s; DH: 0.08 s prior to impact) and thus were capable of displaying a similar hitting motion closer to impact than players with a SH technique.  相似文献   

13.
The aim of this study was to investigate whether kinematic proximal-to-distal sequencing (PDS) and speed-summation are common characteristics of both partial and full-swing shots in golf players of different skill levels and genders. A total of 45 golfers participated, 11 male tournament professionals, 21 male and 13 female elite amateurs. They performed partial shots with a wedge to targets at three submaximal distances, 40, 55 and 70 m, and full-swing shots with a 5 iron and a driver for maximal distance. Pelvis, upper torso and hand movements were recorded in 3D with an electromagnetic tracking system (Polhemus Liberty) at 240 Hz and the magnitude of the resultant angular velocity vector of each segment was computed. The results showed a significant proximal-to-distal temporal relationship and a concomitant successive increase in maximum (peak) segment angular speed in every shot condition for both genders and levels of expertise. A proximal-to-distal utilization of interaction torques is indicated. Using a common PDS movement strategy in partial and full-swing golf shots appears beneficial from mechanical and control points of view and could serve the purpose of providing both high speed and accuracy.  相似文献   

14.
Peak joint angles and joint angular velocities were evaluated for varying speed forehands in an attempt to better understand what kinematic variables are most closely related to increases in post-impact ball velocity above 50% of maximal effort. High-speed video was used to measure three-dimensional motion for 12 highly skilled tennis players who performed forehands at three different post-impact ball speeds: fast (42.7 +/- 3.8 m/s), medium (32.1 +/- 2.9 m/s), and slow (21.4 +/- 2.0 m/s). Several dominant-side peak joint angles (prior to ball impact) increased as post-impact ball speed increased from slow to fast: wrist extension (16%), trunk rotation (28%), hip flexion (38%), knee flexion (27%), and dorsiflexion (5%). Between the aforementioned peak joint angles and ball impact, dominant-side peak angular velocities increased as ball speed increased from slow to fast: peak wrist flexion (118%), elbow flexion (176%), trunk rotation (99%), hip extension (143%), knee extension (56%), and plantarflexion (87%). Most kinematic variables changed as forehand ball speed changed; however, some variables changed more than others, indicating that range of motion and angular velocity for some joints may be more closely related to post-impact ball speed than for other joints.  相似文献   

15.
The study investigated differences in the one- (SH) and two-handed (DH) backhands when hit flat, across-court (AC) and down-the-line (DL), and with heavy topspin DL (TDL). The ability to disguise each of these backhands when hitting the above strokes was also assessed. Eighteen college-level male tennis players, identified as having a high performance topspin SH (n = 6) or DH (n = 12) backhand drive, participated in the study. Players were required to hit three AC, DL and TDL backhands from the baseline with their preferred technique, while being filmed with two high-speed video cameras operating at 200 Hz. The highest horizontal velocity backhand for each stroke was analysed. Results indicated that the sequential coordination of five body segments (hips, shoulder, upper arm, forearm, and hand/racquet rotations) was required for the execution of the SH stroke. The same number of segments were generally coordinated in the DH stroke (hips, shoulders, and varying degrees of upper arm and forearm rotations followed by hand/racquet movement). Mature players produced comparable racquet horizontal velocities 0.005 s prior to impact using either the SH or DH backhand technique. The SH backhand was characterised by a more rotated shoulder alignment than the DH stroke (SH: 119.1 degrees; DH: 83.4 degrees) at the completion of the backswing. At impact the ball was impacted further in front (SH: 0.59 m: DH: 0.40 m) and a similar distance to the side of the body (SH: 0.75 m: DH: 0.70 m). Players using the DH backhand technique delayed the horizontal acceleration of the racquet towards the ball (SH: 0.13 s: DH: 0.08 s prior to impact) and thus were capable of displaying a similar hitting motion closer to impact than players with a SH technique.  相似文献   

16.
Elite golfers' kinematic sequence in full-swing and partial-swing shots   总被引:1,自引:0,他引:1  
The aim of this study was to investigate whether kinematic proximal-to-distal sequencing (PDS) and speed-summation are common characteristics of both partial and full-swing shots in golf players of different skill levels and genders. A total of 45 golfers participated, 11 male tournament professionals, 21 male and 13 female elite amateurs. They performed partial shots with a wedge to targets at three submaximal distances, 40, 55 and 70 m, and full-swing shots with a 5 iron and a driver for maximal distance. Pelvis, upper torso and hand movements were recorded in 3D with an electromagnetic tracking system (Polhemus Liberty) at 240 Hz and the magnitude of the resultant angular velocity vector of each segment was computed. The results showed a significant proximal-to-distal temporal relationship and a concomitant successive increase in maximum (peak) segment angular speed in every shot condition for both genders and levels of expertise. A proximal-to-distal utilization of interaction torques is indicated. Using a common PDS movement strategy in partial and full-swing golf shots appears beneficial from mechanical and control points of view and could serve the purpose of providing both high speed and accuracy.  相似文献   

17.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = - 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

18.
The aim of this study was to compare the pre- and post-impact three-dimensional kinematics of the ball and racquet during first and second serves performed by elite tennis players. Data were collected from four male and four female right-handed professional players during competition using two high-speed cameras (200 Hz). For each player, one first serve and one second serve from the 'deuce' or right service court that landed within the specified target area were analysed. To test for significant differences between the first and second serves, Wilcoxon tests (P < or = 0.05) were performed on selected parameters. The results indicate that the ball travelled forward and to the left during the flight phase of the toss in all but one trial. The average pre-impact ball forward location for the first serve was significantly more in front and had a higher associated forward ball velocity than the corresponding values for the second serve. On average, the decrease in post-impact ball speed from the first to the second serve was 24.1%. No significant differences between the first and second serves were found in the pre-impact racquet head speed and orientation, which was represented as a unit vector perpendicular to the racquet face. The major adjustments made by the players when going from the first to second serve were a decrease in pre-impact ball forward location (P < or = 0.01) and an increase in the pre-impact racquet vertical and lateral velocities (both P < or = 0.05). This implies that the players tossed the ball closer to the body and imparted topspin and sidespin on the ball by changing the racquet vertical and lateral velocities when going from the first to the second serve.  相似文献   

19.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

20.
The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号