首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this work, finite time position and heading control based on backstepping based fast terminal sliding mode control is proposed for coaxial octorotor subjected to external wind disturbances. First, mathematical model of the coaxial octorotor is developed and then a new learning-based technique, an extended inverse multi-quadratic radial basis function network (EIMRBFN) is proposed to estimate the unmodeled dynamics of the octorotor. The external disturbance observer is also designed to encompass the realistic disturbance effect in the dynamical model and to allow the controller handle external disturbances, effectively. Backstepping controller based on fast terminal sliding model control is then proposed and also applied on the resultant dynamical model that provides finite time convergence of system's states. The stability of the proposed controller and complete system is analyzed using Lyapunov stability theory. Finite time convergence analysis of the desired trajectory is also provided. Simulations are carried out to validate the effectiveness of the proposed control scheme. Comparison with traditional PID and LQR controllers also verifies that the proposed controller achieves improved performance.  相似文献   

2.
This paper studies output feedback control of hydraulic actuators with modified continuous LuGre model based friction compensation and model uncertainty compensation. An output feedback adaptive robust controller is constructed which combines the adaptive control part and the robust control part seamlessly. The adaptive part is constructed to handle the parametric uncertainties existed in the model. The residuals coming from parameter adaption and the unmodeled dynamics are taken into consideration by the robust part. Since only the position signal is available, the velocity, pressure, and internal friction states are obtained by observation or estimation. The errors coming from observation and estimation are also dealt with the robust part. Furthermore, the convergence of the closed-loop controller–observer scheme is achieved by the Lyapunov method in the presence of parametric uncertainties only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed controller–observer scheme.  相似文献   

3.
To perform repetitive tasks, this paper proposes an adaptive boundary iterative learning control (ILC) scheme for a two-link rigid–flexible manipulator with parametric uncertainties. Using Hamilton?s principle, the coupled ordinary differential equation and partial differential equation (ODE–PDE) dynamic model of the system is established. In order to drive the joints to follow desired trajectory and eliminate deformation of flexible beam simultaneously, boundary control strategy is added based on the conventional joints torque control. The adaptive iterative learning algorithm for boundary control scheme includes a proportional-derivative (PD) feedback structure and an iterative term. This novel controller is designed to deal with the unmodeled dynamics and other unknown external disturbances. Numerical simulations are provided to verify the performance of proposed controller in MATLAB.  相似文献   

4.
Modeling uncertainties including parameter uncertainty and unmodeled dynamics hinder the development of high-performance tracking controller for hydraulic servo system. The observation for the unknown state is another issue worthy of attention. In this paper, a new seamless observer-controller scheme for hydraulic servo system is proposed with partial feedback. The position signal and the pressure signal are firstly used to build an extended structure estimation system for the unknown state. The advantage of this estimation system is that the state observer provides an extended structure for the parameter adaptation compared to other state observers. Thus the parameter uncertainty can be handled. An adaptive robust controller is synthesized in this paper which includes the adaptive part and the robust part. The adaptive part is used to eliminate the parameter uncertainty. Then the residuals coming from the parameter adaption and the errors coming from the state observation are taken into consideration in the robust part. Moreover, the unmodeled dynamics is also handled by the robust part. Theoretical analysis proves that a prescribed transient performance and the final tracking accuracy can be guaranteed by the proposed observer-controller scheme in the presence of both parameter uncertainty and unmodeled dynamics. Furthermore, the convergence of the closed-loop controller-observer system is achieved with the parametric uncertainty existed only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed observer-controller scheme.  相似文献   

5.
随着大规模风电并网,电力系统在保证其自身可靠运行方面面临着巨大的挑战,同时也给维持并网地区电压稳定带来了前所未有的难度。本文对由双馈式风电机组构成的并网风场进行分析,首先构建了双馈风电机组的简化数学模型,然后分别研究了恒功率因数和恒电压两种运行方式下的无功电压控制策略,并且通过绘制各控制方式下的PV曲线,进一步分析了风场在两种运行方式下对系统电压稳定性的影响,从双馈风场的运行角度,为系统安全稳定运行提供了分析依据。通过对风速扰动和无穷大电网电压跌落两种情况下的仿真分析,验证了双馈机的恒压运行方式在参与系统无功调节方面的积极作用。  相似文献   

6.
This paper investigates the multiple model adaptive control problem of affine systems with unknown parameters. Firstly, an adaptive controller with resettable parameters and an adaptive law with projection function are designed to ensure the asymptotic tracking for the reference system and the boundedness of parameters. Secondly, a transformation of system is given to enable a finite-time parameter estimator to calculate the uncertain parameters in the system matrix and the affine item simultaneously. Then, a novel performance index to describe the error between the controlled plant and the identification model is given to orchestrate switchings among identification models aiming to choose the best one. Next, the sufficient condition of the asymptotic convergence for the system error is given. Finally, all designs are evaluated in a hardware-in-the-loop simulation platform of an aero-engine control system and compared with three other methods, the effectiveness and superiority are verified.  相似文献   

7.
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, ‘explosion of complexity’ of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.  相似文献   

8.
A novel distributed secondary voltage and frequency control strategy is proposed with the Zeno-free event-triggered scheme for an island alternating current (AC) microgrid under Denial-of-Service (DoS) attacks. A DoS attack compensation mechanism and an event-triggered mechanism on the basis of the checking scheme are developed. Then, a secure event-checked based event-triggered secondary control method is explored to guarantee the tracking performance of the microgrid under DoS attacks. Further, some linear matrix inequalities (LMIs)-based sufficient conditions are derived to design the controller. What’s more, the proposed asynchronous periodic triggering method can efficiently save communication resources and further reduce the update number of the controller. Finally, the efficiency of this work is verified by an islanded AC microgrid with comparisons.  相似文献   

9.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

10.
In order to improve the response speed and control precision of the braking system with parameters uncertainty and nonlinear friction, a braking-by-wire system based on the electromagnetic direct-drive valve and a novel cascade control algorithm was proposed in this paper. An electromagnetic linear actuator directly drives the valve spool and rapidly adjusts the pressure of braking wheel cylinders. A dynamic model of electromagnetic direct-drive valve considering improved LuGre dynamic friction is established. A novel cascade control algorithm with an outside loop pressure fuzzy controller and an inside loop electromagnetic direct-drive valve position controller was proposed. An adaptive integral robust inside loop controller is designed by combining friction compensation adaptive control law, linear feedback, and integral robust control. The uncertainty parameters and the friction state are estimated online. The stability of the cascade controller is proved by the Lyapunov method. Then a multi-objective opitimizemization design method of control parameters is proposed, which combines a multi-objective game theory and a technique for order preference by similarity to ideal solution (TOPSIS) based on entropy weight. The results show that the pressurization time of cascade control is less than 0.09 s under the 15 MPa step target signal. The control precision is improved effectively by the cascade controller under the ARTEMIS condition.  相似文献   

11.
Previously proposed adaptive fuzzy sliding mode control (AFSMC) and adaptive fuzzy sliding mode observer (AFSMO) methods are mixed and extended for the case of affine systems in which the input gain matrix is state-dependent, non-diagonal and non-positive definite. The proposed Extended AFSMCO (E-AFSMCO) method is then applied for position control of a Stewart Manipulator (SM), whose parameters are strongly state-dependent and complex and not suitable for practical control purposes. A robust observer-based control method which can work with a simplified model of the plant, and at the same time can preserve the stability and performance of the overall complex system is of great need. In this study, the SM dynamic model is simplified by removing the dynamic effects of the legs and the neglected terms are considered as un-modeled dynamics, for which the upper bound of the uncertainty is progressively estimated using the proposed adaptation rules. The final controller is comprised of a fuzzy controller in parallel with a robust switching controller. The second Lyapunov theorem is used to prove the closed-loop asymptotic stability. The proposed E-AFSMCO method is verified numerically and experimentally, depicting the effectiveness of the method for real-time industrial applications.  相似文献   

12.
This work aims to design a neural network-based fractional-order backstepping controller (NNFOBC) to control a multiple-input multiple-output (MIMO) quadrotor unmanned aerial vehicle (QUAV) system under uncertainties and disturbances and unknown dynamics. First, we investigated the dynamic of QUAV composed of six inter-connected nonlinear subsystems. Then, to increase the convergence speed and control precision of the classical backstepping controller (BC), we design a fractional-order BC (FOBC) that provides further degrees of freedom in the control parameters for every subsystem. Besides, designing control is a challenge as the FOBC requires knowledge of accurate mathematical model and the physical parameters of QUAV system. To address this problem, we propose an adaptive approximator that is a radial basis function neural network (RBFNN) included in FOBC to fix the unknown dynamics problem which results in the new approach NNFOBC. Furthermore, a robust control term is introduced to increase the tracking performance of a reference signal as parametric uncertainties and disturbances occur. We have used Lyapunov's theorem to derive adaptive laws of control parameters. Finally, the outcoming results confirm that the performance of the proposed NNFOBC controller outperforms both the classical BC , FOBC and a neural network-based classical BC controller (NNBC) and under parametric uncertainties and disturbances.  相似文献   

13.
This paper presents a new Takagi-Sugeno-Kang fuzzy Echo State Neural Network (TSKFESN) structure to design a direct adaptive control for uncertain SISO nonlinear systems. The proposed TSKFESN structure is based on the echo state neural network framework containing multiple sub-reservoirs. Each sub-reservoir is weighted with a TSK fuzzy rule. The adaptive law of the TSKFESN-based direct adaptive controller is derived by using a fractional-order sliding mode learning algorithm. Moreover, the Lyapunov stability criterion is employed to verify the convergence of the fractional-order adaptive law of the controller parameters. The evaluation of the proposed direct adaptive control scheme is verified using two case studies, the regulation problem of a torsional pendulum and the speed control of a direct current (DC) machine as a real-time application. The simulation and the experimental results show the effectiveness of the proposed control scheme.  相似文献   

14.
A spacecraft formation flying controller is designed using a sliding mode control scheme with the adaptive gain and neural networks. Six-degree-of-freedom spacecraft nonlinear dynamic model is considered, and a leader–follower approach is adopted for efficient spacecraft formation flying. Uncertainties and external disturbances have effects on controlling the relative position and attitude of the spacecrafts in the formation. The main benefit of the sliding mode control is the robust stability of the closed-loop system. To improve the performance of the sliding mode control, an adaptive controller based on neural networks is used to compensate for the effects of the modeling error, external disturbance, and nonlinearities. The stability analysis of the closed-loop system is performed using the Lyapunov stability theorem. A spacecraft model with 12 thrusts as actuators is considered for controlling the relative position and attitude of the follower spacecraft. Numerical simulation results are presented to show the effectiveness of the proposed controller.  相似文献   

15.
This paper investigates the frequency change problem of hydraulic turbine regulating system based on terminal sliding mode control method. By introducing a novel terminal sliding mode surface, a global fast terminal sliding mode controller is designed for the closed loop. This controller eliminates the slow convergence problem which arises in the terminal sliding mode control when the error signal is not near the equilibrium. Meanwhile, following consideration of the error caused by the actuator dead zone, an adaptive RBF estimator based on sliding mode surface is proposed. Through the dead zone error estimation for feed-forward compensation, the composite terminal sliding mode controller has been verified to possess an excellent performance without sacrificing disturbance rejection robustness and stability. Simulations have been carried out to validate the superiority of our proposed methods in comparison with other two other kinds of sliding mode control methods and the commonly used PID and FOPID controller. It is shown that the simulation results are in good agreement with the theoretical analysis.  相似文献   

16.
针对二级倒立摆系统的快速响应及其稳定和鲁棒控制问题,以直线二级倒立摆为研究对象,在建立其非线性数学模型的基础上,利用极点配置方法设计了滑模变结构控制器。将所设计的控制器应用到二级倒立摆系统,实验仿真表明,该控制策略实现了对二级倒立摆系统的实时跟踪控制,系统具有较好稳定控制和较强抗干扰能力。  相似文献   

17.
In this paper, the finite-time exponential consensus problem is addressed for a class of multi-agent systems against some disturbed factors, which include system uncertainties, communication perturbations, and actuator faults. All disturbed factors are supposed to be influenced by internal and external effects of systems. The internal effects are described in terms of dependency on the system states, while the external actions are restricted by constant bounds. To obtain the information of the rate of dependency on the states and constant bounds, an adaptive mechanism is designed to estimate the rate and bounds. Based on these estimates, a distributed adaptive sliding mode controller is constructed to eliminate the effects of those disturbed factors. Then exponential consensus of the closed-loop adaptive multi-agent system is achieved within a finite time based on Lyapunov stability theory. The efficiency of the developed adaptive consensus control strategy is verified by a coupled system with four F-18 aircrafts of decoupled longitudinal model.  相似文献   

18.
This paper presents a novel Lyapunov function-based backstepping controller design to tackle the tracking problems for nonlinear systems with unmodeled dynamics and unmeasurable states. The coexistence of unmodeled dynamics and unmeasurable states is the main challenge, which calls for novel techniques to take these two factors into account simultaneously. First, the classical Luenberger observer is extended with a novel transformation function to decouple the original system state and state estimation error. In this way, the effect of unmodeled dynamics on system stability can be separately considered. On this basis, a command-filtered controller is designed to simplify the backstepping design procedures. It is worthy to pointed out that, a novel Lyapunov function is developed to simplify the stability analysis with command filter, where the filter errors, the observer error, compensated tracking errors, and parameter estimation errors can be guaranteed to be semi-globally uniformly ultimate bounded. The simulation studies are investigated to validate the effectiveness of the presented design scheme.  相似文献   

19.
为了提高控制系统的通信可靠性,介绍了基于DSP和SJA1000的双滤波冗余CAN总线的设计与实现。该系统中,CAN总线的工作模式为PeliCAN下的双滤波,使从节点既能够与主节点进行点对点通信,又能够接收主节点的广播数据。给出了系统硬件电路设计和SJA1000的初始化与接收,以及发送数据和切换总线的软件流程。  相似文献   

20.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号