首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

2.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

3.
In this paper, a novel complete model-free integral reinforcement learning (CMFIRL) algorithm based fault tolerant control scheme is proposed to solve the tracking problem of steer-by-wire (SBW) system. We begin with the recognition that the reference errors can eventually converge to zero based on the command generator model. Then an augmented tracking system is constructed with a corresponding performance index which is considered as a type of actuator failure. By using the reinforcement learning (RL) technique, three novel online update strategies are respectively developed to cope with the following three cases, i.e., model-based, partially model-free, and completely model-free. Especially, the RL algorithm for the complete model-free case eliminates the constraints of requiring the known system dynamics in fault-tolerant tracking controlling. The system stability and the convergence of the CMFIRL iteration algorithm are also rigorously proved. Finally, a simulation example is given to illustrate the effectiveness of the proposed approach.  相似文献   

4.
5.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

6.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

7.
This paper investigates the adaptive fault-tolerant control problem for a class of continuous-time Markovian jump systems with digital communication constraints, parameter uncertainty, disturbance and actuator faults. In this study, the exact information for actuator fault, disturbance and the unparametrisable time-varying stuck fault are totally unknown. The dynamical uniform quantizer is utilized to perform the design work and the mismatched initializations at the coder and decoder sides are also considered. In this paper, a novel quantized adaptive fault-tolerant control design method is proposed to eliminate the effects of actuator fault, parameter uncertainty and disturbance. Moreover, it can be proved that the solutions of the overall closed-loop system are uniformly bounded, which is asymptotically stable almost surely. Finally, numerical examples are provided to verify the effectiveness of the new methodology.  相似文献   

8.
In this paper, a learning-based active fault-tolerant control (FTC) scheme for robot manipulators with uncertainties and actuator faults is proposed. Unlike traditional FTC methods, with dynamic learning theory, both uncertainties and actuator faults can be accurately identified/learned by radial basis function networks. Based on the learned knowledge, dynamical classifiers and experience-based controllers corresponding to different fault modes are constructed. With the help of dynamical classifiers, fault detection and isolation can be obtained rapidly and accurately, and the correct experience-based controller (instead of the controller reconfigured online) corresponding to the current fault system is selected to compensate for faults, and superior control performance is achieved, even in the presence of faults. The simulation studies demonstrate the feasibility of the proposed FTC method.  相似文献   

9.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

10.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

11.
Actuator faults often occur in physical systems, which seriously affect the transient performance and control accuracy of the system. For the finite-time consensus tracking problem of multiple Lagrangian systems with actuator faults and preset error constraints, a novel distributed fault-tolerant controller is proposed in this paper. The proposed controller is developed based on the barrier Lyapunov function method and the adding a power integrator technique, which can not only guarantee the steady-state performance of the system but also its transient performance. Due to its strong sensitivity to the variation of system errors, the proposed controller can quickly eliminate the system initial errors and the error perturbations caused by actuator faults. That is, the controller can guarantee that the consensus error converges to zero in a finite time and is always constrained within the preset error bound. Finally, the effectiveness of the developed controller is verified by simulation of a multi-manipulator system.  相似文献   

12.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

13.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

14.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

15.
In this paper a novel adaptive robust fault-tolerant sync control method is proposed for a two-slider system where two sliders are constrained by a flexible beam. At first the dynamic models of sync motion system subject to external disturbances and actuator faults are derived. In order to avoid the shortcomings of truncated model, the model of flexible beam is described by using infinite dimensional equation. Then based on the models a novel disturbance observer and an adaptive fault-tolerant control law are designed. The disturbance observer is used to estimate and cancel external disturbances. The adaptive fault-tolerant control is used to deal with the partial loss of effectiveness faults. Lyapunov functional approach is used to prove that the closed-loop system with the proposed control laws is uniformly bounded stable. Finally, some simulation results display that the proposed control laws can obtain excellent sync performance in the present of external disturbances and actuator partial loss of effectiveness faults.  相似文献   

16.
In this paper, a command filtered fault-tolerant control (CFFTC) approach is investigated for induction motors (IMs) discrete-time system in the presence of actuator faults and unknown load disturbances. Firstly, the IMs system discrete-time model is obtained by Euler method. Then, the fuzzy logic systems (FLSs) is utilized to compensate for unknown actuator faults. Besides, introducing the error compensation mechanism into discrete-time systems via command filters, “complexity of computation” and noncausal problem can be conquered, and the filtering error is avoided concurrently. Finally, simulation results demonstrate the validity of the presented fault-tolerant method for IMs system.  相似文献   

17.
In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to simultaneously estimate the state of the system and the actuator fault. Then, the estimate of fault is used to compensate for the effect of the fault. By using the estimate of fault and the states, a fault tolerant controller using a PWL state feedback is designed. The observer-based fault-tolerant controller is obtained by the interconnection of the estimator and the state feedback controller. We show that separate design of the state feedback and the estimator results in the stability of the overall closed-loop system. In addition, the input-to-state stability (ISS) gain for the closed-loop system is obtained and a procedure for minimizing it is given. All of the design conditions are formulated in terms of linear matrix inequalities (LMI) which can be solved efficiently. Also, performance of the estimator and the state feedback controller are minimized by solving convex optimization problems. The efficiency of the method is demonstrated by means of a numerical example.  相似文献   

18.
This paper investigates a novel strategy which can address the fault-tolerant control (FTC) problem for nonlinear strict-feedback systems containing actuator saturation, unknown external disturbances, and faults related to actuators and components. In such method, the unknown dynamics including faults and disturbances are approximated by resorting to Neural-Networks (NNs) technique. Meanwhile, a back-stepping technique is employed to build a fault-tolerant controller. It should be stressed that the main advantage of this strategy is that the NN weights are updated online based on gradient descent (GD) algorithm by minimizing the cost function with respect to NNs approximation error rather than regarding weights as adaptive parameters, which are designed according to Lyapunov theory. In addition, the convergence proof of NN weights and the stability proof of the proposed FTC method are given. Finally, simulation is performed to demonstrate the effectiveness of the proposed strategy in dealing with unknown external disturbances, actuator saturation and the faults related to the components and actuators, simultaneously.  相似文献   

19.
In this paper, a constrained control scheme based on model reference adaptive control is investigated for the longitudinal motion of a commercial aircraft with actuator faults and saturation nonlinearities. Actuator faults and constraints are both important factors adversely affecting the stability and performance of flight control systems. An adaptive adjustment law based on Lyapunov function is utilized to adjust the fault-tolerant control law. Both additive and multiplicative faults are considered in the designed controller to deal with the three types of actuator faults: locked in place, loss of effectiveness, and bias. Moreover, different techniques are implemented in the basic and fault-tolerant controller to anti-windup. Proofs for the stability of the two modified controllers which improve the performance of control system operating in the presence of actuator faults and saturations are proposed. Finally, a numerical example of the anti-windup fault-tolerant controller for a commercial aircraft is demonstrated. The stability and performance improvements can be accrued with the presented fault-tolerant control scheme.  相似文献   

20.
This study investigates the distributed fault-tolerant output regulation for heterogeneous linear multi-agent systems in the presence of actuator faults. For the systems which are not the neighbors of exosystem, the distributed fixed-time observer is put forward to observe the state of exosystem. Note that it is dependent on the global information of network topology. To address this issue, the fully distributed adaptive fixed-time observer is further proposed. It can estimate not only the state of exosystem, but also the system matrix of exosystem. Based on the proposed observer, a novel fault-tolerant controller is developed to compensate for actuator faults. Moreover, it is proven that the proposed controller is effective to address the fault-tolerant output regulation problem by the Lyapunov stability theory. Finally, two illustrative examples are given to illustrate the feasibility of the main theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号