首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   

2.
This paper focuses on input-to-state stability of a class of switched stochastic delayed systems which are drived by Lévy noise. By multiple Lyapunov function and average dwell time approach, the sufficient conditions of the ψλ(t)-weighted input-to-state stability can be obtained if all the subsystems are input-to-state stable. Then utilizing comparison principle and the method of constant variation, the sufficient criteria of the eλt-weighted input-to-state stability of the switched stochastic delayed systems containing both input-to-state stable subsystems and non-input-to-state stable subsystems can also be derived. Finally, an example is given to illustrate the effectiveness of the proposed results.  相似文献   

3.
In this paper, the stability problem of discrete-time systems with time-varying delay is considered. Some new stability criteria are derived by using a switching technique. Compared with the Lyapunov–Krasovskii functional (LKF) approach, the method used in this paper has two features. First, a switched model, which is equivalent to the original system and contains more delay information, is introduced. It means that the criteria obtained by using the LKF method can be regarded as stability criteria for the switched system under arbitrary switching. Second, when the switching signal is known, the stability problem for the switched model under constrained switching is considered and piecewise LKFs are adopted to obtain stability criteria. Since constrained switching is less conservative than arbitrary switching if the switching signal is known, one can know that the obtained results in this paper are less conservative than some existing ones. Two examples are given to illustrate the effectiveness of the obtained results.  相似文献   

4.
This paper investigates the event-based asynchronous finite-time control for a class of cyber-physical switched systems under Denial-of-Service (DoS) attacks. Considering the attack’s characteristics, we put forward a novel attack-instant-constrained hybrid event-triggered scheme (HETS), which can not only contribute to reducing the network transmission overload, but also well descibe the network denial service behavior under attack interference. An asynchronous and ZOH-based controller is delicately constructed to mitigate the influence of DoS attacks and network-induced delay. A double-mode dependent Lyapunov–Krasovskii functional (LKF) is developed to set up some sufficient finite-time stability criteria for the concerned systems in view of the asynchronous switching effect. Finally, an application example of the urban railway system is offered to verify the proposed control algorithm.  相似文献   

5.
In this paper, the problem of stabilization for a class of switched delay systems with polytopic type uncertainties under asynchronous switching is investigated. When the switching of the controllers has a lag to the switching of subsystems, i.e. the switching signal of the switched controller involves delay, parameter-dependent Lyapunov functionals are constructed, which are allowed to increase during the running time of active subsystems with the mismatched controller. Based on the average dwell time method, sufficient conditions for exponential stability are developed for a class of switching signals. Finally, a river pollution control problem is given to demonstrate the feasibility and effectiveness of the proposed design techniques.  相似文献   

6.
This paper concerns the simultaneous fault detection and control (SFDC) problem for a class of nonlinear stochastic switched systems with time-varying state delay and parameter uncertainties. The switching signal of detector/controller unit (DCU) is assumed to be with switching delay, which results in the asynchronous switching between the subsystems and DCU. By constructing a switching strategy depending on the state and switching delays, new sufficient conditions expressed by a set of linear matrix inequalities (LMIs) is derived to design DCU gains. This problem is formulated as an H optimization problem and both mean square exponential stability and fault detection of augmented system are considered. A numerical example is finally exploited to verify the effectiveness and potential of the achieved scheme.  相似文献   

7.
We consider the stability and L2-gain analysis problem for a class of switched linear systems. We study the effects of the presences of input delay and switched delay in the feedback channels of the switched linear systems with an external disturbance. By contrast with the most of the contributions available in literatures, we do not require that all the modes of the switched system are stable when input delay appears in the feedback input. By reaching a compromise among the matched-stable period, the matched-unstable period, and the unmatched period and permitting the increasing of the multiple Lyapunov functionals on all the switching times, the solvable conditions of exponential stability and weighted L2-gain are developed for the switched system under mode-dependent average dwell time scheme (MDADT). Finally, numerical examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

8.
This paper is concerned with the problem of state feedback stabilization of a class of discrete-time switched singular systems with time-varying state delay under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the subsystems. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence of a class of stabilizing switching laws is first derived to guarantee the closed-loop system to be regular, causal and exponentially stable in the presence of asynchronous switching. The stabilizing switching laws are characterized by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

9.
This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov–Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

10.
This article investigates the defense control problem for sampled-data Takagi-Sugeno (T-S) fuzzy systems with multiple transmission channels against asynchronous denial-of-service (DoS) attacks. Firstly, a new switching security control method is proposed to tolerate the asynchronous DoS attacks that act independently on each channel. Then, based on switching strategy, the resulting augmented sampled-data system can be converted into new switched systems including several stable subsystems and one open-loop subsystem. Besides, by applying the piecewise Lyapunov-Krasovskii (L-K) function method, membership functions (MFs) dependent sufficient conditions are derived to ensure the exponential stability of newly constructed switching systems. Moreover, quantitative relations among the sampling period, the exponential decay rate, and the rate of all channels being fully attacked and not being completely attacked are established. Finally, simulation examples show the effectiveness of the developed defense control approach.  相似文献   

11.
In this paper, the problem of mean-square integral input-to-state stability of nonlinear impulsive semi-Markov jump delay systems is investigated. By using stochastic Lyapunov functions together with Razumikhin technique, some sufficient conditions for mean-square integral input-to-state stability for a class of nonlinear impulsive semi-Markov jump delay systems are developed. In particular, the results obtained generalize and complement some recent literature. Finally, some numerical examples are given to show the effectiveness and advantages of the proposed techniques.  相似文献   

12.
This paper investigates the problem of event-triggered adaptive neural network (NN) control for multi-input multi-output (MIMO) switched nonlinear systems with output and state constraints and non-input-to-state practically stable (ISpS) unmodeled dynamics. A nonlinear mapping is firstly utilized to deal with output and state constraints. Also, by developing a new switching signal with persistent dwell-time (PDT) and a switching dependent dynamic signal, the difficulty caused by some non-ISpS unmodeled dynamics is overcome. Then, a type of switching event-triggering mechanisms (ETMs) and event-triggered adaptive NN controllers of subsystems are designed, which handle the issue of asynchronous switching without requiring any known restriction on maximum asynchronous time. A piecewise constant introduced into this ETM effectively ensures a strict positive lower bound of inter-event times. Zeno behavior is thus ruled out. Finally, by proposing a novel class of switching signals with reset PDT, it is ensured that all output and state constrains are never violated and all signals of the switched closed-loop system are semi-global uniform ultimate boundedness (SGUUB). A two inverted pendulum system and a numerical example are provided for illustrating the applicability and validity of the proposed method.  相似文献   

13.
This paper studies the input-to-state stabilization problem of nonlinear time-delay systems. A novel event-triggered hybrid controller is proposed, where feedback controller and distributed-delayed impulsive controller are taken into account. By using the Lyapunov-Krasovskii method, sufficient conditions for input-to-state stability are constructed under the designed event-triggered hybrid controller, the relation among control parameters, threshold parameter of the event-triggered mechanism and time delay in the impulsive signals is derived. Compared with the existing results, the obtained input-to-state stability criteria are applicable to time-delay systems with stabilizing delay-dependent impulsive effects and destabilizing ones. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

14.
This paper studies the E-exponential stability of mode-dependent linear switched singular systems with stable and unstable subsystems. First, by constructing an appropriate multiple discontinuous Lyapunov function, new sufficient conditions of E-exponential stability for linear switched singular systems are established. Considering the feature of mode-dependent average dwell time switching, we adopt the switching strategy where fast switching and slowing switching are respectively applied to unstable and stable subsystems. Compared with the existing results, our approach is more flexible and tighter bounds can be obtained. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.  相似文献   

15.
This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems. The distinguishing feature of the proposed method is that the stability of all subsystems of the error switched systems is not necessarily required. First, an output derivative-based method and time-varying coordinate transformation are considered to eliminate the unknown input. Then in order to maintain a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov functions combined with convex combination technique. In addition, the time-varying Lyapunov functions method is also used to analyze the stability of a class of error switched nonlinear systems with stable subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

16.
In this paper, we investigate the incremental H performance problem for a class of stochastic switched nonlinear systems by using a state-dependent switching law and the maximum and minimum dwell time approach. By resorting to the state-dependent switching law, some sufficient conditions are provided to cope with the incremental H performance problem, which can be applied even if all subsystems are unstable. Then, based on the maximum and minimum dwell time scheme, the incremental H performance problem to be solvable is derived for two cases: one is all subsystems are incrementally globally asymptotically stable in the mean(IGASiM), another is both IGASiM subsystems and unstable subsystems coexist. When all subsystems are IGASiM, the stochastic switched nonlinear system is IGASiM and possesses a incremental L2-gain under given conditions. When both IGASiM subsystems and unstable subsystems coexist, if the activation time ratio between IGASiM subsystems and unstable ones is not less than a specified constant, the sufficient conditions for the incremental H performance of the stochastic switched nonlinear system are given. Two numerical examples are given to illustrate the validity of methods proposed.  相似文献   

17.
The stability issue of discrete-time switched systems governed by cyclic switching laws is discussed in this paper. By establishing inverse-timer-based multiple Lyapunov functions (ITBMLFs), which are less conservative than traditional MLFs, limitations of the existing findings on discrete-time cyclic switched systems (DTCSSs) are well relaxed. Furthermore, from the perspective of computational complexity adjustment, the proposed ITBMLFs are confirmed to be more flexible than the previous ones, which is especially meaningful for the DTCSSs consisting of a large number of subsystems. Based on the cycle-dependent average dwell time (CD-ADT) concept and the ITBMLF approach, newly enhanced stability conditions are launched for DTCSSs where subsystems can be entirely or partially stable, or even completely unstable. Moreover, robust stability of DTCSSs can be achieved when norm-bounded and time-varying parameter uncertainties (NBTVPUs) are taken into account. Finally, the effectiveness and superiority of the proposed technologies are expounded through numerical examples.  相似文献   

18.
In this paper, we investigate the stability and periodicity of a class of state-dependent switched systems with all unstable subsystems by means of energy analysis. We firstly transform the unstable subsystems reversibly into the form of second order mechanical systems, and then construct energy functions by calculating the sum of kinetic and potential energies of each subsystem. After that, two switching lines, derived from the lines with the largest and smallest energy drops, make the stable phase trajectory approach to the equilibrium point at the fastest speed. In addition, we explore possible dynamic behaviors of the switched system under a pair of switching line including asymptotic stability, instability and periodicity. Furthermore, based on the bisection method and nested intervals theorem, we design a state-dependent switching law, which makes the switched system periodic initiated from a stable switching law. Finally, numerical simulation examples are provided to illustrate the effectiveness and less conservativeness of the proposed method with practical significance.  相似文献   

19.
A new control design approach is proposed for a class of nonlinear systems expressed by Takagi–Sugeno (T-S) fuzzy model, considering several objectives including robustness against input time-varying delay, input constraint satisfaction, and reference tracking. The proposed controller is designed on the basis of an augmented model, Lyapunov–Krasovskii functional, linear matrix inequality (LMI) tools, and parallel distributed compensation (PDC) approach. Proof of the input-to-state stability (ISS) criterion is provided for the error dynamics. Input constraint satisfaction is performed using a reference-management algorithm based on the linearized closed-loop system from the reference input to the constrained variables. In order to illustrate the effectiveness of the proposed control approach, simulations are performed on three practical examples, including a flexible-joint robot and a continuous stirred tank reactor (CSTR).  相似文献   

20.
A general input-to-state stability (ISS)-type small-gain result is presented. It specializes to a small-gain theorem for ISS operators, and it also recovers the classical statement for ISS systems in state-space form. In addition, we highlight applications to incrementally stable systems, detectable systems, and to interconnections of stable systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号