首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

2.
This paper investigates the problem of event-triggered adaptive neural network (NN) control for multi-input multi-output (MIMO) switched nonlinear systems with output and state constraints and non-input-to-state practically stable (ISpS) unmodeled dynamics. A nonlinear mapping is firstly utilized to deal with output and state constraints. Also, by developing a new switching signal with persistent dwell-time (PDT) and a switching dependent dynamic signal, the difficulty caused by some non-ISpS unmodeled dynamics is overcome. Then, a type of switching event-triggering mechanisms (ETMs) and event-triggered adaptive NN controllers of subsystems are designed, which handle the issue of asynchronous switching without requiring any known restriction on maximum asynchronous time. A piecewise constant introduced into this ETM effectively ensures a strict positive lower bound of inter-event times. Zeno behavior is thus ruled out. Finally, by proposing a novel class of switching signals with reset PDT, it is ensured that all output and state constrains are never violated and all signals of the switched closed-loop system are semi-global uniform ultimate boundedness (SGUUB). A two inverted pendulum system and a numerical example are provided for illustrating the applicability and validity of the proposed method.  相似文献   

3.
This paper deals with the problems of finite-time stability and stabilization for continuous-time switched positive linear time-delay systems under mode-dependent average dwell time switching signals. First, finite-time stability conditions are established by constructing an multiple piecewise copositive Lyapunov–Krasovskii functional. Then, finite-time stabilization is achieved by designing a state-feedback controller in the form of linear programming. This numerical construction approach proposed for controller cancels the restriction of the multiple piecewise copositive Lyapunov–Krasovskii functional on controllers, which can decrease the conservatism. Finally, two numerical examples are given to show the advantages of our methods.  相似文献   

4.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

5.
This paper investigates the output regulation problem for a class of switched nonlinear systems with at least a feedback incrementally passive subsystem via average dwell time method. First, the output regulation problem for switched nonlinear system via full information feedback is solved. The stabilizing controllers consist of the state feedback controllers and linear output feedback controllers. In some particular cases, it is unnecessary to verify that all the solutions of the switched nonlinear system converge to the bounded steady-state solution, while we only have to verify the regulated outputs converge to zero directly. Second, a dynamic error-feedback stabilizer for each subsystem and a switched internal model whose subsystems all are incrementally passive are designed to solve the output regulation problem for the switched nonlinear system under a composite switching signal with average dwell times. The stabilizer and the internal model are interconnected in a more simple way and allowed to switch asynchronously. Finally, two examples are provided to show the effectiveness of the obtained results.  相似文献   

6.
A problem of stabilization about uncertain networked control systems (NCSs) with random but bounded delays is discussed in this paper. By using augmented state-space method, this class of problems can be modeled as discrete-time jump linear systems governed by finite-state Markov chains. A new switched model based on probability is proposed to research problems of reliable control when actuators become ageing or partially disabled. Using improved V-K iteration algorithm, a class of reliable controllers are designed to make systems asymptotically mean square stable under several stochastic disturbances such as random time-delay and stochastic actuator failure and the maximal redundancy degree is given through this method.  相似文献   

7.
In this paper, the problem of stabilization for a class of switched delay systems with polytopic type uncertainties under asynchronous switching is investigated. When the switching of the controllers has a lag to the switching of subsystems, i.e. the switching signal of the switched controller involves delay, parameter-dependent Lyapunov functionals are constructed, which are allowed to increase during the running time of active subsystems with the mismatched controller. Based on the average dwell time method, sufficient conditions for exponential stability are developed for a class of switching signals. Finally, a river pollution control problem is given to demonstrate the feasibility and effectiveness of the proposed design techniques.  相似文献   

8.
In this paper, finite-time stabilization of switched linear systems with saturating actuators is discussed by virtue of time domain approach. State feedback controllers are designed to make the closed-loop systems finite-time stable. If the state is unavailable, observer-controller compensators are used. The results not only give sufficient conditions for finite-time stabilization of switched linear systems with saturating actuator, but also show the effect of the switching signals on finite-time stabilization of the system. Moreover, based on average dwell-time technique, we present the average dwell-time of switching signals to guarantee finite-time stability of the closed loop system. An example is employed to verify the efficiency of the proposed method.  相似文献   

9.
This paper investigates the finite-time stabilization for a class of upper-triangular switched nonlinear systems, where nonlinearities are allowed to be lower-order growing. Due to the special structure of the considered system, the presented methods for lower-triangular switched nonlinear systems in the literature can not be directly utilized. To solve the problem, a state feedback control law with a new structure is designed to guarantee the global finite-time stability of the closed-loop system under arbitrary switching signals by using the recursive design approach and the nested saturation method. A simulation example is provided to show the effectiveness of the proposed method.  相似文献   

10.
For the switched time-delay systems, the delay-dependent stability criteria will be derived under a state-driven switching law. A linear state transformation was introduced to transfer the switched time-delay system. On delay dependent stabilization analysis, we apply the Lyapunov-Krasovskii functionals to analyze the stabilization of the switched time-delay systems. This method can be applied to cases when all individual switched systems are unstable. Finally, one example is exploited to illustrate the proposed schemes.  相似文献   

11.
This paper is concerned with the problem of state feedback stabilization of a class of discrete-time switched singular systems with time-varying state delay under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the subsystems. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence of a class of stabilizing switching laws is first derived to guarantee the closed-loop system to be regular, causal and exponentially stable in the presence of asynchronous switching. The stabilizing switching laws are characterized by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

12.
In this paper, we deal with the finite-time stability of positive switched linear time-delay systems. By constructing a class of linear time-varying copositive Lyapunov functionals, we present new explicit criteria in terms of solvable linear inequalities for the finite-time stability of positive switched linear time-delay systems under arbitrary switching and average dwell-time switching. As an important application, we apply the method to finite-time stability of linear time-varying systems with time delay.  相似文献   

13.
In this paper, the multiple model strategy is applied to the adaptive control of switched linear systems to improve the transient performance. The solvability of the adaptive stabilization problem of each subsystem is not required. Firstly, the two-layer switching mechanism is designed. The state-dependent switching law with dwell time constraint is designed in the outer-layer switching to guarantee the stability of the switched systems. During the interval of dwell time constraint, the parameter resetting adaptive laws are designed in the inner-layer switching to improve the transient performance. Secondly, the minimum dwell time constraint providing enough time for multiple model adaptive control strategy to work fully and maintaining the stability of the switched systems is found. Finally, the proposed switched multiple model adaptive control strategy guarantees that all the closed-loop system signals remain bounded and the state tracking error converges to zero.  相似文献   

14.
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov–Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

15.
This paper studies the problem of decentralized stabilization for a class of large-scale stochastic high-order time-delay feedforward nonlinear systems. A series of delay-independent state feedback controllers is constructed, which is based on the approach of adding one power integrator. The stochastically global asymptotic stability (GAS) of the closed-loop system under the above-mentioned controllers is proved by Lyapunov–Krasovskii theorem and homogeneous domination approach. A simulation example is given to illustrate the effectiveness of the results of this paper.  相似文献   

16.
In this paper, a complete procedure for the study of the output regulation problem is established for a class of positive switched systems utilizing a multiple linear copositive Lyapunov functions scheme. The feature of the developed approach is that each subsystem is not required to has a solution to the problem. Moreover, two types of controllers and switching laws are devised. The first one depends on the state together with the external input and the other depends only the error. The conditions ensuring the solvability of the problem for positive switched systems are presented in the form of linear matrix equations plus linear inequalities under some mild constraints. Two examples are finally given to show the performance of the proposed control strategy.  相似文献   

17.
This paper focuses on an output feedback stabilization problem for a class of switched nonlinear systems in non-strict feedback form under asynchronous switching via sampled-data control. Since the output of the considered systems is measurable only at the sampling instants, an observer is designed with a tunable scaling gain to estimate the state, and then a sampled-data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the activation of the subsystem. By choosing an appropriate Lyapunov function, it is proved that the constructed controller with dwell time constraint can globally stabilize the considered systems under asynchronous switching. Finally, the effectiveness of the proposed method is illustrated by two examples.  相似文献   

18.
Finite-time stability concerns the boundness of system during a fixed finite-time interval. For switched systems, finite-time stability property can be affected significantly by switching behavior; however, it was neglected by most previous research. In this paper, the problems of finite-time stability analysis and stabilization for switched nonlinear discrete-time systems are addressed. First, sufficient conditions are given to ensure a class of switched nonlinear discrete-time system subjected to norm bounded disturbance finite-time bounded under arbitrary switching, and then the results are extended to H finite-time boundness of switched nonlinear discrete-time systems. Finally based on the results on finite-time boundness, the state feedback controller is designed to H finite-time stabilize a switched nonlinear discrete-time system. A numerical design example is given to illustrate the proposed results within this paper.  相似文献   

19.
This paper is concerned with the exponential stabilization of switched linear systems subject to actuator saturation with both stabilizable subsystems and unstabilizable subsystems for continuous-time case and discrete-time case, respectively. Sufficient conditions for the exponential stabilization under dwell time switching under the cases of continuous-time and discrete-time are established by using a novel class of multiple time-varying Lyapunov function. The existence conditions for stabilizing controllers are presented in terms of linear matrix inequalities (LMIs) for the continuous-time case and the discrete-time case, respectively. Two optimization problems are proposed for obtaining the maximal attraction region. The problem of exponential stabilization for switched system subject to actuator saturation with asynchronous switching controller is also studied. Several numerical examples are presented to prove the validity of the obtained results.  相似文献   

20.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号