首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
在分式加减运算中,若能根据分式的结构特点,使用通分的技巧,不仅可以保证运算的正确性,而且可以提高解题的速度,收到事半功倍之效。一、整体通分例1计算x3x-1-x2-x-1。解:原式=x3x-1-(x2+x+1)=x3x-1-(x-1)(x2+x+1)x-1=x3x-1-x3-1x-1=1x-1。二、拆项通分例2计算a-bab+b-cbc+c-aca。解:原式=(1b-1a)+(1c-1b)+(1a-1c)=1b-1a+1c-1b+1a-1c=0。三、一次通分例3计算1x2+3x+2+1x2+5x+6+1x2+4x+4。解:原式=1(x+1)(x+2)+1(x+2)(x+3)+1(x+1)(x+3)=x+3+x+1+x+2(x+1)(x+2)(x+3)=3(x+2)(x+1)(x+2)(x+3)=3(x+1)(x+3)。四、逐步通分例4计算1x-1-1x+1-2x2+1。…  相似文献   

2.
在分式运算中,常常要利用通分·若我们能细心观察、分析分式的结构特点,结合一定的通分技巧,往往可使运算简捷、准确·取得事半功倍的良好效果·一、整体处理后通分例1计算aa-31-a2-a-1·解:原式=aa-31-(a2+a+1)=a3-(a-a1)-(a12+a+1)=a3-a(a-31-1)=a-11·二、化积约分后通分例2计算x+2x3-3x-10-x2+x3-x2-10·解:原式=(x-5x)+(2x+2)-(x+5x)-(2x-2)=x1-5-x+15=10x2-25·三、分组结合后通分例3计算x-12+x2+1-x-21-x+12·解:原式=(x1-2-x1+2)+(x2+1-x-21)=4x2-4-x24-1=4(x2-1)-4(x2-4)(x2-4)(x2-1)=12x4-5x2+4·四、拆项相消后通分例4计算(x-11)…  相似文献   

3.
分式加减运算的关键是通分,对于有些特殊的分式加减题,若按照常规方法进行通分,往往运算比较繁杂,不便于速算.若能注意观察分式的结构特征,灵活运用解题技巧,则能化繁为简,常可收到事半功倍的效果.下面向同学们介绍几种通分的常用技巧,供学习时参考.一、先整体考虑,再通分例1计算a2a-1-a-1.解:原式=a2a-1-(a+1)=a2a-1-(a+1)(a-1)a-1=a2a-1-a2-1a-1=1a-1二、先结合,再通分例2计算1x-1-1x+1-2x2+1-4x4+1解:原式=2x2-1-2x2+1-4x4+1=4x4-1-4x4+1=8x8-1三、先分组,再通分例3计算1x-2+2x+1-2x-1-1x+2解:原式=(1x-2-1x+2)+(2x+1-2x-1)=4x2-4-4x2-1=…  相似文献   

4.
1.约分后通分例1 计算 (x2 2xy y2)/(x2y xy2)-(x2-2xy y2)/(x2y-xy2) 分析分式的分子与分母有公因式,故先约分,然后通分.解原式=(x y)2/xy(x y)-(x-y)2/xy(x-y) =(x y)/(xy)-(x-y)/(xy)=(2y)/(xy)=2/x. 2.整体通分例2 计算a 2-(4/(2-a).分析把a 2化成(a 2)/1,再进行通分.  相似文献   

5.
正分式求值是分式运算中的一类常见问题,对计算能力的要求较高。在求解此类问题时,既要注意基本法则的应用,也要掌握相关的解题技巧。下面举例说明。一、整体通分3例1计算x2+x+1-x3/x-1分析:把(x2+x+1)看成一个整体,对其进行通分,并且分子还可利用乘法公式简化运算。解:原式=(x-1)(x2+x+1)-x3=x3-1-x3=-x-1x-1x-11。x-1二、部分通分例2计算:1-1-2-4x-1x+1x2+1x4。+1分析:按照常规解法是把四个分母一起通分,这样求解过于繁琐。若选择前面两个分式通分,然后再逐个通分,这样化繁琐为简单。解%原式=2-2-4(x+1)(x-1)x2+1x4=+1  相似文献   

6.
一、配方法例 1 分解因式 :2 x3- x2 z- 4 x2 y 2 xyz 2 xy2- y2 z。解 :原式 =(2 x3- 4 x2 y 2 xy2 ) - (x2 z- 2 xyz y2 z) =2 x(x2 - 2 xy y2 ) - z(x2 - 2 xy y2 ) =(x2 -2 xy y2 ) (2 x- z) =(x- y) 2 (2 x- z)。二、拆项法例 2 分解因式 :x3- 3x 2。解 :原式 =x3- 3x- 1 3=(x3- 1 ) - (3x- 3)= (x- 1 ) (x2 x 1 ) - 3(x- 1 ) =(x- 1 ) 2 (x 2 )。注 :本题是通过拆常数项分解的 ,还可通过拆一次项或拆三次项分解 ,读者不妨一试。三、添项法例 3 分解因式 :x5 x 1。解 :原式 =(x5 - x2 ) x2 x 1 =x2 (x3- 1 ) (x2 x 1 ) =x2 (…  相似文献   

7.
一、巧用分式的基本性质例 1.计算 x- 1x ÷ (x- 1x)。解 :原式 =x- 1xx- 1x(化为繁分式 )=(x- 1x )· x(x- 1x)· x(分式的基本性质 )=x- 1x2 - 1=1x+ 1。二、巧用逐步通分法例 2 .化简 11- x+ 11+ x+ 21+ x2 + 41+ x4 。分析 :若一次性完成通分 ,运算量很大 ,注意到 (1- x) (1+ x)=1- x2 ,而 (1- x2 ) (1+ x2 ) =1- x4 ,可以用逐步通分法化简。解 :原式 =21- x2 + 21+ x2 + 41+ x4=41- x4 + 41+ x4=81- x8。三、巧用运算律例 3.计算 11- x+ 8x71+ x8- 4 x31+ x4 - 2 x1+ x2 - 11+ x。分析 :可以先用加法交换律整理顺序如下 :11- x- 11+ x-…  相似文献   

8.
一、配方法例1分解因式:2x3-x2z-4x2y+2xyz+2xy2-y2z解:原式=(2x3-4x2y+2xy2)-(x2z-2xyz+y2z)=2x(x2-2xy+y2)-z(x2-2xy+y2)=(x2-2xy+y2)(2x-z)=(x-y)2(2x-z)·二、拆项法例2分解因式:x3-3x+2·解:原式=x3-3x-1+3=(x3-1)-(3x-3)=(x-1)(x2+x+1)-3(x-1)=(x-1)(x2+x-2)·注:本题是通过拆常数项分解的,还可通过拆一次项或拆三次项分解,读者不妨一试·三、添项法例3分解因式:x5+x+1·解:原式=(x5-x2)+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)·四、主元法例4分解因式:2a2-b2-ab+bc+2ac·解:以a为主元,将原式整理成关…  相似文献   

9.
分式的求值问题,涉及到分式的运算法则、约分、通分、乘法公式、因式分解等多个知识点.利用分式运算中的一些技巧,可以达到化繁为简、巧妙求解的目的. 一、整体代入法例1 已知1/x+1/y=5,求(2x-5xy+2y)/(x+2xy+y)的值. 解法1:因1/x+1/y=5,故xy≠0.  相似文献   

10.
一、拆项变换例 1 分解因式 :x3- 9x 8。解 :原式 =( x3- 1) ( - 9x 9) =( x- 1) ( x2 x 1) - 9( x- 1) =( x- 1) ( x2 x- 8)。注 :本题是通过将 8拆成 - 1和 9后 ,再用分组分解法分解 ;也可将 - 9x拆成 - x和 - 8x,或将x3拆成 9x3和 - 8x3分解。二、添项变换例 2 分解因式 :x4 y4 ( x y) 4。解 :原式 =x4 2 x2 y2 y4 -2 x2 y2 ( x y) 4=( x2 y2 ) 2 -2 x2 y2 ( x y) 4=〔( x y) 2 -2 xy〕2 - 2 x2 y2 ( x y) 4=2〔( x y) 4- 2 xy( x y) 2 x2 y2 〕=2〔( x y) 2 - xy〕2 =2 ( x2 xy y2 ) 2 。注 :本题是关于 x、y的对称式 ,…  相似文献   

11.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

12.
在分式的学习中 ,经常遇到含条件的分式求值问题。解答这类问题时 ,可根据题设和求式的特点 ,灵活运用代入法。下面以实例介绍代入法求分式值的几种途径。一、求值代入例 1.若 |x- y 3|与 |x y- 1995|互为相反数 ,则 x 2 yx- y的值是。( 1995年希望杯全国数学邀请赛初一试题 )解 :依题意 ,有|x- y 3| |x y- 1995|=0 ,∵ |x- y 3|≥ 0 ,|x y- 1995|≥ 0 ,∴ x- y 3=0 ,x y- 1995=0。解之 ,x=996,y=999,∴原式 =996 2× 999996- 999=- 998。二、比值代入例 2 .若 x2 =y3,则 7x2 - 3xy 2 y22 x2 - 3xy 7y2 的值是。( 1995年大连市初中数学竞赛…  相似文献   

13.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

14.
当题目中的未知数x、y具有对称关系时(即当x、y互换位置时,原式保持不变),如果令x y=a,xy=b,用换元法进行解答,就可以使解题过程更简单.下面通过几道例题,帮助同学们掌握这种解题技巧在分式求值中的妙用.例1若x-1x=1,则x3-1x3的值为().A.3B.4C.5D.6解:设1x=y,则x-y=1,xy=1,所以x3-1x3=x3-y3=(x-y)3 3xy(x-y)=13 3×1×1=4.故选B.例2若x2-5x 1=0,则x3 1x3=.解:由x2-5x 1=0,可知x≠0,故等式两边同除以x,得x 1x=5.设1x=y,则x y=5,xy=1,所以x3 1x3=x3 y3=(x y)3-3xy(x y)=53-3×1×5=110.例3已知ax a-x=2,那么a2x a-2x的值是().A.4B.3C.2D.6…  相似文献   

15.
乘乘法公式是由形式特殊的多项式相乘总结出来的规律,共有两种:1.平方差公式(a+b)(a-b)=a2-b2.2.完全平方公式(1)完全平方(和)公式(a+b)2=a2+2ab+b2.(2)完全平方(差)公式(a-b)2=a2-2ab+b2.利用乘法公式进行计算可大大提高运算速度,它的应用非常广泛.下面举例说明乘法公式的巧妙运用.一、巧换位置例1计算(-3t+4)2.解:原式=(4-3t)2=16-24t+9t2.二、巧变符号例2计算(-2a-3)2.解:原式=[-(2a+3)]2=(2a+3)2=4a2+12a+9.三、巧变系数例3计算(2x+6y)(4x+12y).解:原式=2(x+3y).4(x+3y)=8(x+3y)2=8(x2+6xy+9y2)=8x2+48xy+72y2.四、巧变指数例4计算(a+1)…  相似文献   

16.
在进行分式运算时,除了应熟练掌握分式运算的基本方法外,还要善于根据分式的结构特点,采用特殊的方法.现举例说明. 一、分组合并法不要急于将所有分式进行通分,要有选择地先把易通分的分式结合在一起进行计算,然后再将各部分得到的结果进行计算.例1计算1a-b+1a+b-a-ba2+ab+b2-a+ba2-ab+b2.解:原式=1a-b-a-ba2+ab+b2 +1a+b-a+ba2-ab+b2 =3aba3-b3-3aba3+b3=3ab(a3+b3-a3+b3)(a3-b3)(a3+b3)=6ab4a6-b6.练习1:计算1x-2-2x+1-2x-1+1x+2.14x-2x3x4-5x2+4 二、逐步合并法同样不要急于将所有分式进行通分,先将某两个分式结合在一起运算,…  相似文献   

17.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

18.
同学们在学习二次根式时,常会犯一些错误,现举例说明,供同学们参考. 1.化简x3+2x2y+xy2√. 错解:原式=x(x+y)2√=x+yx√. 分析:答案中根号外的x+y是一个整体,必须加括号. 正解:原式=x(x+y)2√=(x+y)x√. 2.把式子x-1x√中根号外的因式适当变形后移到根号内,并使原式的值不变. 错解:原式=x2√·-1x√=-x√. 分析:由公式a=a2√(a≥0)知,根号外的负因式要移进根号内且保持原式的值不变时,需在根号外添加一负号.如-4=-(-4)2√. 正解:由题意可知-1x>0,∴x<0. ∴原式=--x-1x√=-(-x2-1x √=--x√. 3.计算2√÷3√…  相似文献   

19.
一、利用对称式求解例 1 .已知 :a=15- 2 ,b=15 2 ,求a2 b2 7的值。解 :由题设可得 a b=2 5,ab=1。∴原式 =( a b) 2 - 2 ab 7=( 2 5) 2 - 2 7=2 5=5。二、定义法求解例 2 .已知 y=x- 8 8- x 1 8,求代数式 x yx - y- 2 xyx y - y x的值。解 :依据二次根式的定义 ,知 x- 8≥ 0 ,且 8- x≥ 0 ,∴ x=8,从而 y=1 8。∴原式 =x yx - y- 2 ( xy) 2xy( x - y )=( x - y ) 2x - y =x - y=8- 1 8=- 2 。三、用非负数性质求解例 3.如果 a b | c- 1 - 1 | =4a- 2 2 b 1 - 4,那么 a 2 b- 3c=。解 :将原条件式配方 ,得 ( a- 2 - 2 ) …  相似文献   

20.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号