首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
正三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f'(x)=3x2-1,则f'(x0)=3x20-1,过点P0的方程为y-y0=f'(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0).又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f'(-12)=-14,f'(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2(x-1).  相似文献   

2.
例1(2004年重庆高考题)设函数f(x)=x(x-1)·(x-a),a>1,求导数f'(x),并证明有两个不同的极值点x1、x2.解析f'(x)=3x2-2(1+a)x+a.令f'(x)=0,得方程3x2-2(1+a)x+a=0.因Δ=4(a2-a+1)≥4a>0,故方程有两个不同的实根x1、x2.设x10;当x1x2时,f'(x)>0,因此,x1是极大值点,x2是极小值点.例2(2004年全国高考题)已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.解析函数f(x)的导数:f'(x)=3ax2+6x-1.(Ⅰ)当f'(x)<0(xR)时,f(x)是减函数.3ax2+6x-1<0(xR)a<0且Δ…  相似文献   

3.
导数的应用     
导数的应用是中学数学的一个重要内容.下面讨论利用导数研究函数性质.1利用导数研究函数的单调性在区间(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件是:对于任意的x∈(a,b),有f'(x)≥0(或f'(x)≤0),且f'(x)在区间(a,b)的任意子区间上都不存在连续的点使得f'(x)=0.例1已知f(x)=kx3?x2+kx/3?16在R上单调递增,则k的取值范围是()A、k>1B、k≥1C、k>1D、k≥1分析由f(x)=kx3?x2+kx/3?16得f'(x)=3k x2?2x+k/3,又∵函数f(x)在R上单调递增,∴f'(x)≥0在R上恒成立,即3k x2?2x+k/3≥0在x∈R上恒成立.∴30,44310.3kk k??????=>???≤∴R≥1…  相似文献   

4.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

5.
<正>以下是2011年辽宁的一道高考题.已知函数f(x)=lnx-ax2+(2-a)x.(1)(2)略;(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:f'(x0)<0.本题考察了形如f(x)=plnx+mx2+nx+c(p,m,n,c∈R)的导数题型.对导数问题,高考重点考查两方面内容:(1)函数的单调  相似文献   

6.
<正>利用导数判断函数的单调性,进而确定函数的单调区间,这是导数的几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。特别要注意的是:(1)f(x)为增函数  f'(x)≥0且f'(x)=0的根有有限多个;(2)f(x)为减函数  f'(x)≤0且f'(x)=0的根有有限多个。例1若函数f(x)=x3-ax3-ax2+4在(0,2)上单调递减,求实数a的取值范围。  相似文献   

7.
微分学是微积分学的重要的组成部分,而导数是微分学的基本概念之一,因此学生在学习微积分的内容时要时刻抓住导数概念这个关键。通过教学实践及对学生练习中错题的错因分析,笔者认为在理解导数概念时学生需注意以下问题:(一)充分理解导数定义的形式已知函数y=f(x)在点x=x0处可导,那么导数的定义式可取不同的形式,常见的有以下三种:f'(x0)=△lix→m0f(x0 △△xx)-f(x0);f'(x0)=lhi→m0f(x0 hh)-f(x0);f'(x0)=lxi→mx0f(x)-f(x0)x-x0。在这三种常见的形式中要注意1、弄清在怎样的变化过程中求极限,如△x→0,h→0或是x→x0,变化过程不同则分式…  相似文献   

8.
从f'(x)=0谈起     
<正>导数是解决函数图象、性质以及方程不等式等问题的有力工具,是数学高考重点之一.f'(x)=0的根是利用导数分析函数性质过程中最为核心的量,它关联着函数的单调性、极值(最值)等,但某些函数的导数为零时,根不易求得,成为解题过程中的难点.我们举例探究对非常规零点的求解或使用,寻求恰当处理方式,以便对后续问题的解决铺平道路.一、方程f'(x)=0无实数根例1(2016年北京高考题)设函数f(x)  相似文献   

9.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

10.
正导数的主要作用是研究函数的单调性,利用导数可以判断函数的单调性,求函数的单调区间,求函数的极值,最值以及解决恒成立问题中参数的范围问题.下面通过一道常见的习题及其变形来探究导数的应用.引例已知定义在R上的函数f(x)=x2-3x-m.讨论函数f(x)的单调性,并求出其单调区间和极值.  相似文献   

11.
极限lim x→0sinx/x=1说明当x→0时,sinx≈x,这其实是函数f(x)=sinx在x0=0处的一次近似式,一般地,如果函数在x0处可导,则其一次近似式为f(x)≈f(x0)+f'(x0)(x-x0),误差为x-x0的高阶无穷小.为了进一步减小误差,提高精确度,扩大使用范围,就需要使用泰勒公式:f(x)=f(x0)+f'(x0)(x-x0)+f″(x0)/2!(xx0)2+…+f(n)(x0)/n!(x-x0)n+f(n+1)(ξ)/(n+1)!(x-x0)n+1,其中ξ在x0和x之间.  相似文献   

12.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

13.
导数是高等数学的重要概念之一,它是研究可导函数的重要工具.在研究函数的单调性、极值、曲线的切线等方面都有它的一席之地.本文拟通过实例来剖析导数在初等数学中的一些应用.1 研究函数的单调性 利用导数研究函数的单调性,主要是根据下列结论:“设函数 y = f (x) 在某个区间内可导,若 f ′(x) > 0 ,则 f (x) 在此区间内为增函数;若 f ′(x) < 0 ,则 f (x) 在此区间内为减函数”.其一般步骤为:(1)求出导函数 f ′(x) ;(2)令 f ′(x) > 0 ,求出其解集,即为 f (x) 的单调递增区间;令 f ′(x) < 0 ,求出其解集,即 f (x) 的单调递减区间. …  相似文献   

14.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

15.
导数作为一种工具,在解决数学问题时应用极为方便,尤其是利用导数可以求函数的单调性、极值、最值以及曲线的切线.在学习的过程中,概念不清导致导数应用错误的情形时常发生.本文拟对导数应用中常见的误区进行简单剖析.一、对极值的条件理解不清例1函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求a,b.误解由题意知f'(x)=3x2+2ax+b,且f'(1)=0,f(1)=10,即2a+b+3=0,a2+a+b+1=10.解得ab==4-,11,或ab==-33,.剖析本题误把f(x0)为极值的必要条件当成充分条件.要保证f(x0)为极值,还需验证f'(x)在x0两侧附近符号是否相异.当a=4,b=-11时,f'(x)=(3x+11)(x-1)在…  相似文献   

16.
刘开军 《职教论坛》2003,(20):62-62
充分条件、必要条件、充要条件是研究命题条件和结论的相互关系时常用的数学术语,下面在微分中说明这些条件的应用。一、充分条件假言判断“若A则B”为真,则称条件A是B的充分条件。简言之,“有此则必然,无此未必不然”。例1若函数y=f(x)在点x0有极值,且f(x0)存在,则函数y=f(x)在点x0的导数为零,即f’(x0)=0。分析很明显,当函数y=f(x)在点x0有极值且导数存在时,根据导数的几何意义,函数所表示的曲线在该点的切线平行于x轴,即有f’(x0)=0。但倒过来说,“若函数y=f(x)在点x0的导数为零,则函数y=f(x)在点x0有极值”就不一定成立了。因为使y=f(…  相似文献   

17.
<正>知识点:导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f'(x)>0,则y=f(x)在该区间为增函数;如果f'(x)<0,则y=f(x)在该区间为减函数。(2)函数单调性问题包括:(1)求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;(2)利用单调性证明不等式或比较大小,常用构造函数法。一、求解含参函数的单调区间  相似文献   

18.
导数是新课标下的新增内容.导数的工具性拓展了导数的学习与研究空间,除了应用导数解决函数的单调性、最值外,在求函数的值域、证明不等式、距离等方面都有广泛的应用,在高考复习时要重视.一、应用导数的定义求函数的极限【例1】已知f(x)=lnx,求极限limx→1f(x)-f(1)x-1的值.解:∵f(x)=lnx,f′(x)=1x,∴limx→1f(x)-1x-1=f′(1)=1.点评:导数定义的等价形式为f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limx→x0f(x)-f(x0)x-x0.二、应用导数的工具性求函数的单调区间、最值及值域【例2】求函数f(x)=xcosx-sinx(x≥0)的单调递增区间.解:f′(x)=-xsi…  相似文献   

19.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

20.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号