首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
教育   1篇
科学研究   1篇
体育   6篇
信息传播   1篇
  2019年   1篇
  2018年   1篇
  2013年   3篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Searching for relevant material that satisfies the information need of a user, within a large document collection is a critical activity for web search engines. Query Expansion techniques are widely used by search engines for the disambiguation of user’s information need and for improving the information retrieval (IR) performance. Knowledge-based, corpus-based and relevance feedback, are the main QE techniques, that employ different approaches for expanding the user query with synonyms of the search terms (word synonymy) in order to bring more relevant documents and for filtering documents that contain search terms but with a different meaning (also known as word polysemy problem) than the user intended. This work, surveys existing query expansion techniques, highlights their strengths and limitations and introduces a new method that combines the power of knowledge-based or corpus-based techniques with that of relevance feedback. Experimental evaluation on three information retrieval benchmark datasets shows that the application of knowledge or corpus-based query expansion techniques on the results of the relevance feedback step improves the information retrieval performance, with knowledge-based techniques providing significantly better results than their simple relevance feedback alternatives in all sets.  相似文献   
2.
The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints’ range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.  相似文献   
3.
The aim of this study was to examine the influence of level of skill and swimming speed on inter-limb coordination of freestyle swimming movements. Five elite (2 males, 3 females; age 18.9?±?1.0 years, height 1.71?±?0.04?m, body mass 62.1?±?7.0?kg) and seven novice (age 22.0?±?2.0 years, height 1.77?±?0.04?m, body mass 74.8?±?9.0?kg) swimmers swam a sprint and a self-paced 25?m freestyle trial. The swimming trials were recorded by four digital cameras operating at 50 Hz. The digitized frames underwent a three-dimensional direct linear transformation to yield the three-dimensional endpoint kinematic trajectories. The spatio-temporal relationship between the upper limbs was quantified by means of the peak amplitude and time lag of the cross-correlation function between the right and left arm's endpoint trajectories. A strong anti-phase coupling between the two arms, as confirmed by peak amplitudes greater than 0.8, was noted for both groups and swimming speeds. Significantly higher (P <?0.05) peak amplitudes were observed for the sprint compared with self-paced swimming. No significant differences in the strength of inter-limb coupling were noted between the elite and novice swimmers (P >?0.05). Time lags were very close to 0?ms and did not differ between groups or swimming speeds. We conclude that in freestyle swimming, the intrinsic anti-phase (180° phase difference) inter-limb relationship is strongly preserved despite the physically powerful environmental influence of the water and this “preferred” pattern is not affected by level of skill. In contrast, increasing movement speed results in stronger inter-limb coupling that is closer to the anti-phase inter-limb relationship.  相似文献   
4.
This paper reports findings from a phenomenographic investigation into blended university teaching using virtual learning environments (VLEs). Interviews with 25 Computer Science teachers in Greek universities illuminated a spectrum of teachers’ conceptions and approaches from ‘teacher-focused and content-oriented’, through ‘student-focused and content-oriented’, to ‘student-focused and process-oriented’. Using VLEs was described as a means of supporting: A—information transfer; B—application and clarification of concepts; C—exchange and development of ideas, and resource exploration and sharing; D—collaborative knowledge-creation, and development of process awareness and skills. The study suggests that pedagogical beliefs and circumstances underpinning face-to-face teaching are more influential in shaping approaches to blended VLE use than VLE system features. The authors propose that the findings could be used to inform educational enhancement initiatives and that there is a need for further discipline-focused research on blended teaching.  相似文献   
5.
Purpose: The purpose of this study was to determine the reliability of cardiorespiratory and pelvic kinematic responses to simulated horseback riding (SHBR) and to characterize responses to SHBR relative to walking in apparently healthy children. Method: Fifteen healthy children (Mage = 9.5 ± 2.6 years) completed SHBR on a commercially available simulator at low intensity (0.27 Hz) and high intensity (0.65 Hz) during 3 sessions on different occasions. Heart rate (HR), blood pressure, and respiratory gases were measured at rest and during steady-state exercise at both intensities. Pelvic displacement was measured during steady-state exercise. Rate of energy expenditure, mean arterial pressure, and rate pressure product (RPP) were calculated. Participants also walked on a treadmill for 26.8 m/min to 80.5 m/min in 13.4-m/min increments at 0% grade during 1 session to compare cardiorespiratory responses with those of SHBR. Results: Physiological variables across all 3 SHBR sessions were similar at both intensities (p>.05 for all). Intraclass correlation coefficients (ICCs) and coefficients of variation indicate good to modest reliability of cardiorespiratory measures during SHBR (ICCs = .542–.996 for oxygen consumption, energy expenditure, and RPP). Cardiorespiratory variables, except for HR, were 2% to 19% greater, and pelvic displacement was up to 37% greater with high-intensity riding. Treadmill walking at all speeds elicited greater physiological responses compared with SHBR (p < .05). Conclusion: Cardiorespiratory responses and pelvic kinematics are reproducible with SHBR in young children, and these responses were lower than those elicited by slow treadmill walking.  相似文献   
6.
7.
The purpose of this investigation was to detect whether differences exist concerning the dynamic and kinematic parameters of vertical squat jump (SJ) on rigid (RS) and sand (SS) surface. Fifteen elite male beach volleyball players (age: 25.6 +/- 6.2 years; height: 188.0 +/- 3.5 cm; body mass: 83.2 +/- 6.0 kg; mean +/- SD, respectively) performed SJ. Force platform and kinematic analyses were used with paired sample T-tests to evaluate the differences. Vertical jump height was significantly smaller (p < .001) on SS than RS. Maximal force and maximal power were significantly higher on RS than SS (p < .05 and p < .01 respectively). Impulse time was larger in SS but with no significant difference (p = .286). Kinematic analysis revealed significant differences between the values of ankle joint during starting posture (p < .01) and of hip joint at the moment of take-off (p < .05). Ankle joint range of motion and angular velocity was larger in SS (p < .05). In conclusion, SJ height on SS was smaller than on RS because of the compliance and the instability of the sand. This resulted in a reduction in maximum force and take-off velocity. Furthermore, the compliance of SS made it hard for the ankle to push along the vertical axis of the movement of the body and as a result it slipped behind in an attempt to maximize propulsion. As a result, the body tries to balance and equalise this movement and move the hip to larger extension.  相似文献   
8.
Volleyball     
The purpose of this investigation was to detect whether differences exist concerning the dynamic and kinematic parameters of vertical squat jump (SJ) on rigid (RS) and sand (SS) surface. Fifteen elite male beach volleyball players (age: 25.6±6.2 years; height: 188.0±3.5cm; body mass: 83.2±6.0 kg; mean ±SD, respectively) performed SJ. Force platform and kinematic analyses were used with paired sample T‐tests to evaluate the differences. Vertical jump height was significantly smaller (p < .001) on SS than RS. Maximal force and maximal power were significantly higher on RS than SS (p < .05 and p < .01 respectively). Impulse time was larger in SS but with no significant difference (p = .286). Kinematic analysis revealed significant differences between the values of ankle joint during starting posture (p < .01) and of hip joint at the moment of take‐off (p < .05). Ankle joint range of motion and angular velocity was larger in SS (p < .05). In conclusion, SJ height on SS was smaller than on RS because of the compliance and the instability of the sand. This resulted in a reduction in maximum force and take‐off velocity. Furthermore, the compliance of SS made it hard for the ankle to push along the vertical axis of the movement of the body and as a result it slipped behind in an attempt to maximise propulsion. As a result, the body tries to balance and equalise this movement and move the hip to larger extension.  相似文献   
9.
The aim of this study was to examine the influence of level of skill and swimming speed on inter-limb coordination of freestyle swimming movements. Five elite (2 males, 3 females; age 18.9+/-1.0 years, height 1.71+/-0.04 m, body mass 62.1+/-7.0 kg) and seven novice (age 22.0+/-2.0 years, height 1.77+/-0.04 m, body mass 74.8+/-9.0 kg) swimmers swam a sprint and a self-paced 25 m freestyle trial. The swimming trials were recorded by four digital cameras operating at 50 Hz. The digitized frames underwent a three-dimensional direct linear transformation to yield the three-dimensional endpoint kinematic trajectories. The spatio-temporal relationship between the upper limbs was quantified by means of the peak amplitude and time lag of the cross-correlation function between the right and left arm's endpoint trajectories. A strong anti-phase coupling between the two arms, as confirmed by peak amplitudes greater than 0.8, was noted for both groups and swimming speeds. Significantly higher (P<0.05) peak amplitudes were observed for the sprint compared with self-paced swimming. No significant differences in the strength of inter-limb coupling were noted between the elite and novice swimmers (P>0.05). Time lags were very close to 0 ms and did not differ between groups or swimming speeds. We conclude that in freestyle swimming, the intrinsic anti-phase (180 degrees phase difference) inter-limb relationship is strongly preserved despite the physically powerful environmental influence of the water and this "preferred" pattern is not affected by level of skill. In contrast, increasing movement speed results in stronger inter-limb coupling that is closer to the anti-phase inter-limb relationship.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号