首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我们熟悉了g(x) =Asin(ωx φ) B的最小正周期T =2π|ω|,那么|g(x) |的最小正周期呢 ?定理 1 已知f(x) =|Asin(ωx φ) B| ,A、B、ω、φ为常数且A、ω≠ 0 .1.1 若B =0 ,则f(x)最小正周期为T =π|ω|;1.2 若B≠ 0 ,则f(x)最小正周期为T =2π|ω|.定理 2 已知f(x) =|Acos(ωx φ) B| ,A、B、ω、φ为常数且A、ω≠ 0 .2 .1 若B =0 ,则f(x)最小正周期为T =π|ω|;2 .2 若B≠ 0 ,则f(x)最小正周期为T =2π|ω|.定理 3 已知f(x) =|Atan(ωx φ) B| ,A、B、ω、φ为常数且A、ω≠ 0 ,则f(x)最…  相似文献   

2.
一、利用公式求周期 (1)函数y=2sin(x/2+π/3)的最小正周期T=_____; (2)已知)y=an(πx/4+π/3)的最小正周期T=_____; (3)函数f(x)=-sin2x的最小正周期为___; (4)y=sin2xcos2x的最小正周期是____; (5)函数y=sinx-cosx懿的最小正周期是____; (6)甬数f(x)=cos2x-2√3 sinxcosx+1的最小正周期是____;  相似文献   

3.
《数理天地》高中版99年6期发表的《速解一类周期题》一文主张,对于形如f(x)=f(x)+f2(x)的函数的周期,可以利用下列结论快速求解:若f1(x)的周期是T1,f2(x)的周期是T2,则函数f(x)=f1(x)+f2(x)的周期是T1、T2的最小公倍数(以上指的均是最小正周期),可惜,这个结论在不少情况下是失败的,请看.  相似文献   

4.
在高中数学教学中,对于函数f(x)=sin x cosx的最小正周期的求法,总避开不提.问题的提法,多以选择题或是证明题的形式出现.如求证:f(x)=sin x cosx的最小正周期是2π.解题过程很简单:证明∵对任意的x∈R,都有f(x π2)=sin(x π2) cos(x π2)=cos x ?sin x=f(x).∴T=π2是函数f(x)=sin x cosx的周期.假设存在0相似文献   

5.
一、一个周期问题若T是f (x)、g(x)的周期,则 T 也是f(x)±g(x)的周期.这是容易证明的定理,也是同学们熟悉的性质.然而,把周期换成最小正周期,结论就未必成立了,即是说若T是f(x)、g(x)的最小正周期.那么,T就不一定是f (x)±g(x)的最小正周期.譬如 sin4x,cos2x 容易断定它们都以π为最小正周期,但 y= sin4x cos2x 的最小正周期是多少? 却是一个值得探讨的事,2004 年全国高考正是以此疑问设置了一道选择题,现介绍如下:二、一道高考题及快速解法函数y=sin4x cos2x的最小正周期为(  )(A)π4 (B)π2 (C)π (D)2π快速解法,设f(x)=s…  相似文献   

6.
1 挖掘三角函数定义域中的隐含条件 例1 求函数f(x)=2tanx/2/1-tan2x/2的最小正周期. 错解:∵tanx=2tanx/2/1-tan2x/2∴f(x)=tanx,∴函数f(x)最小正周期T=π.  相似文献   

7.
中学生在数学练习中 ,有些问题稍不留意 ,就会出现错误 ,如何快捷有效地避免这种无形错误 ,本文作些分析探讨 1 关于函数的最小正周期例 1:求函数f (x) =2tanx1-tan2x的最小正周期错解 :原函数式化简为f (x) =tan2x ,所以周期为 π2正解 :显然原函数的定义域为 {x︱x≠kπ π2 且x≠ kπ2 π4 (k∈Z) } ,化简后 ,定义域为{x︱x≠kπ π4 (k∈Z) } ,定义域扩大了 ,所以周期未必相同 ,那怎样求周期呢 ,一般参考书的方法是 :首先作出y =tan2x的图象 ,如图 1:图 1  原函数的图象 ,只是去掉x≠kπ π2 (k∈Z)所对应的点 ,从去掉的几个点看 ,原函数的周期为π 这种方法虽然可以求出周期 ,但图形要画足够“宽” ,才能看出 ,不易把握 现在我们来看 ,有什么规律 ,不画出图象 ,就可直接求出周期 由函数的周期的定义容易证明 ,下面结论 :结论 1:若函数f (x)化简后的函数为f1(x) ,f1(x) ,的最小正周期为T1,函数f (x)的间断点的最小正周期为T2 ,则f (x)的最小正周期为T1,T2 的最小公倍...  相似文献   

8.
关于周期函数f(x)的倒数函数1/(f(x))的周期性,文[1]是这样叙述的:“若f(x)是集M上的周期函数,则1/(f(x))是集{x|f(x)≠0,x∈M}上的周期函数。若f(x)有最小正周期T则1/(f(x))也有最小正周期T。”该定理的后半段是不正确的。文[2)曾给出一反例如下。  相似文献   

9.
有关周期函数的最小正周期的存在、求法的问题探讨不少。本文借助于周期函数的分析性质,确定其最小正周期。定理1 设f(x)为非常数的连续周期函数,T是其任一个正周期,若在[0,T]内函数最大值的点(最小值的点)的个数为m,那么,1)当m为质数时,其最小正周期T_0为T/M 或T;2)当m为合数时,其最小正周期T_0为T/K,其中K是m的某个约数。[注] 证明:因为f(x)是非常数连续函数,因此f(x)必定存有最小正周期,不妨令作T_0,而T是f(x)的任一个正同期,且在[0,T]  相似文献   

10.
二、有关定理下面介绍的一系列定理,可以帮助判定函数的周期性或求出最小正周期。定理1 设f(x)、g(x)皆为定义在实数集R上的周期函数,T_1与T_2分别为f(x)与g(x)的正周期,当T_1/T_2等于有理数时,则f(x)±g(x),f(x)·g(x)均为定义在R上的周期函数,且T_1与T_2的公倍数是它们的周期。(未必是最小正周期) 证设T_1/T_2=p/q(p与q皆为正整数)令T=qT_1=pT_2则f(x±T)±g(x±T)=f(x±qT_1)±g(x±pT_2)=f(x)±g(x).所以f(x)±g(x)是周期函数,T为周期。对于f(x)·g(x),同理可证是以T为周期的函数。注(1)实数集R可用上、下无界数集E代替;(2)对于有限个函数,定理仍然  相似文献   

11.
现行高中教材指出:2kπ(k∈Z,k≠0)是正弦函数 f(x)=sinx 的周期,其最小正周期为2π,且略去证明.事实上,求正弦函数的最小正周期并非难事,本文介绍一个求三角函数最小正周期的简单有效的方法:先在函数的定义域中找出一个适当的 x_0通过方程 f(T x_0)=f(x_0)解出 T;然后对 T 的每一个正值(由小到大)验证f(T x)=f(x)是否对定义域中的任意 x 的值都成立,即分别检验 T 是否为其周期.显然第一个是周期的 T 的值就是所给函数的最小正周期.下面举例说明:  相似文献   

12.
一、周期函数 设函数f(x)的定义域为数集A 定义1,若存在T>0,对任意x∈A且x±T∈有: f(x±T)=f(x)则称函数f(x)为周期函数,T称为函数f(x)的周期。 定义2,对于周期函数y=f(x),如果存在一个最小正数Z,能使x取定义域中的任意值时,等式f(x±Z)=f(x)恒成立,那么这个最小的正周期Z称为函数f(x)的周期,亦称基本周期。 充分理解这两个定义的实质,必须弄清以下几个问题: (1)若要证明一个函数y=f(x)是周期函数,必须严格证明它符合定义的条件,即找到非零常数T,使f(x=T)=f(x)。  相似文献   

13.
一、周期函数的定义设函数y=f(x),(x∈D),如果存在非零常数T,使得对任何x∈D都有f(x+T)=f(x),则函数f(x)为周期函数.非零常数T叫做y=f(x)的一个周期.如果所有的周期中存在一个最小的正数,那么这个最小正数就叫做y=f(x)的最小正周期.  相似文献   

14.
对于三角函数中的周期性内容的学习与把握 ,笔者认为应从如下四个方面进行 .1 正确理解周期函数的概念全日制高中数学第一册 (下 ) ,2 0 0 0年人教版第5 1页 ,给出了周期函数的定义 :“一般地 ,对于函数f(x) ,如果存在一个非零常数T ,使得当x取定义域内的每一个值时 ,都有 f(x+T) =f(x) ,那么函数f(x)就叫做周期函数 ,非零常数T叫做这个函数的周期 .”对于一个周期函数 f(x) ,如果在它所有的周期中存在一个最小的正数 ,那么这个最小正数就叫做f(x)的最小正周期 .对周期函数这一概念的理解 ,应注意以下几点 :(1)若 f(x)是周期函数 ,则其定…  相似文献   

15.
文[1]在讨论周期函数有关最小正周期的性质时特别强调:若函数f(x)有最小正周期t,则f(x)的任何周期T·一定是t的整数倍,即存在k(k∈Z,k≠0),使T·=kt  相似文献   

16.
求函数数f(x)=sinmx conx的最小正周期是一件很有意义的事,在这里我们先假定都是有理数,在这一情况下,我们有如下命命题:设p_1、p_2、q_1、q_2都是正整数,且满足则函数这里(,)[,]分别表示两个整数的最大公约数和最小公倍数.证明:设f(x)有一个正周期T,不难知道f(-x)也有一个正周期周期T.不难验证:所以T也是sin(p_1x)/q1和cosp_2x/q_2的周期,这样T就是sin(p_1x)/q1和cosp_2x/q_2的最小正周期和的倍数.即存在正整数k_1和k_2使得下式成立:由此不难得出:从命题的已知条件及最大公约数的定义知:所以我们可以得出这里Q是正整数…  相似文献   

17.
判别一个函数是不是周期函数,求周期函数的周期,以及证明最小正周期等问题,一般都是利用定义解决的。若函数f(x)为周期函数,必有等式 f(x+T)=f(x)成立。这里要注意:(1)T必须是常数,且不为零。(2)上式必须对于定义域内的所有x值都成立。要判别函数f(x)是周期函数或者非周期函数,以及求周期函数的周期只要列出等式f(x+  相似文献   

18.
<正> 命题1 如果对于函数f(x)的定义域内任意一个x,都有f(x+T)=f(x-T)那么f(x)是周期函数,2T为它的一个周期证∵f(x+2T)=f[(x+T)+T] =f[(x=T)-T]=f(x)∴f(x)为周期函数,并且2T是它的一个周期.命题2 如果对于函数f(x)的定义域内任意一个x,都有  相似文献   

19.
目前,各大、中专教材对周期函数是这样定义的:“对于函数f(x),如果存在不为零的常数T,使得对定义域D内的一切X,都有f(x T)=f(x)成立,则函数f(x)叫做周期函数,T叫做这个函数的周期。显然若T为函数f(x)的周期,则KT(K=±1,±2,……)也是它的周期。通常周期函数的周期是指最小正周期”。由定义,对任意x∈D,若有f(x T)=f(x),T≠0,则必有f(x-T)=f(x)。事实上此结论未必成立。因为对任意x∈D,若有x T∈D且f(x T)=f(x),T≠0,未必有x-T∈D,从而未必有f(x—T)=f(x)。例如,函数f(x)=x-[x],x∈D,其中[x]为x的最大  相似文献   

20.
正弦函数y=Asin(ωx φ)是三角函数的重要内容,历年来都是高考命题的热点.现结合去年全国各地高考试题,根据考查正弦函数的不同内容,进行分类,并探讨其各自不同解法.1.确定函数最小正周期正弦函数y=Asin(ωx φ)的最小正周期为T=2π|ω|.【例1】已知函数y=12sinx πA(A>0)的最小正周期为3π,则A=.解:∵y=12sinx πA=12sin(1Ax πA)(A>0)∴其最小正周期为T=2π1A=2Aπ.则2Aπ=3π故A=32.【例2】函数f(x)=cos2x-23sinxcosx的最小正周期是.解:∵f(x)=cos2x-23sinxcosx=cos2x-3sin2x=-2sin(2x-π6)∴其最小正周期为T=2π2=π.2.求函数…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号