首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

2.
The gross anatomy dissection course is considered to be one of the most important subjects in medical school. Advancing technology facilitates the production of e-learning material that can improve the learning of topographic anatomy during the course. The purpose of this study was to examine a locally produced audiovisual dissection manual's effects on performance in dissection, formal knowledge gained, motivation, emotions, learning behavior, and learning efficiency of the medical students. The results, combined with the total effort put into the production of the manual, should support decisions on further implementation of this kind of audiovisual e-learning resource into the university's curriculum. First-year medical students (n = 279) were randomly divided into three groups for two weeks within the regular dissection course hours during the dissection of the anterior and posterior triangles of the neck. Two groups received an audiovisual dissection manual (n = 96) or an improved written manual (n = 94) as an intervention, the control group (n = 89) received the standard dissection manual. After dissection, each student filled out tests and surveys and their dissections were evaluated. The audiovisual dissection manual did not have any significant positive effects on the examined parameters. The effects of the audiovisual dissection manual on the medical students' learning experience, as observed in this study, did not support further curriculum implementation of this kind of e-learning resource. This study can serve as an orientation for further evaluation and design of e-learning resources for the gross anatomy dissection course.  相似文献   

3.
Despite extensive experience teaching residents, surgeons are an untapped resource for educating medical students. We hypothesized that by involving surgeons as teachers earlier in the medical school curriculum, medical students' interest in surgery will increase and their opinions of surgeons will improve. Five programs designed to involve surgeons as educators in the medical school curriculum were implemented. The first program, started in 2008, introduced surgical faculty into the first-year medical student anatomy dissection laboratories. Other programs initiated in 2008 included: Surgical Clinical Correlates in Anatomy, which involved faculty teaching through cadaver surgery; Clinical Pathologic Conferences in Anatomy, a surgeon-led conference based on clinical cases; and a women's faculty-student mentorship program. Table Rounds, a surgeon-led anatomy review that used clinical scenarios to quiz students was begun in 2009. All five programs were successfully integrated into the medical school curriculum. While student opinion of surgeons as educators improved, there were no significant changes in student interest in surgery as a career nor change in performance on written examinations over the Anatomy content covered by the surgeons. Surgical faculty and trainees can be integrated into the medical school curriculum. Involving surgeons as educators earlier in the medical school curriculum may have longer term effects than could be observed in this study. At a minimum, the experience improved student opinion of surgeons as educators.  相似文献   

4.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

5.
The purpose of this study was to evaluate the extracurricular cadaveric dissection program available to medical students at an institution with a modern (time‐compressed, student‐centered, and prosection‐based) approach to medical anatomy education. Quantitative (Likert‐style questions) and qualitative data (thematic analysis of open‐ended commentary) were collated from a survey of three medical student cohorts who had completed preclerkship. Perceived benefits of dissection included the hands‐on learning style and the development of anatomy expertise, while the main barrier that limited participation was the time‐intensive nature of dissection. Despite perceived benefits, students preferred that dissection remain optional. Analysis of assessments for the MD2016 cohort revealed that dissection participation was associated with enhanced performance on anatomy items in each systems‐based unit examination, with the largest benefits observed on discriminating items that assessed knowledge application. In conclusion, this study revealed that there are academic and perceived benefits of extracurricular participation in dissection. While millennial medical students recognized these benefits, these students also indicated strong preference for having flexibility and choice in their anatomy education, including the choice to participate in cadaveric dissection. Anat Sci Educ 11: 294–302. © 2017 American Association of Anatomists.  相似文献   

6.
In contrast to medical education, information on the use of arts as a learning approach is scarce in veterinary anatomy. The aim of this prospective, questionnaire-based study was to survey students' use of drawing in various aspects of veterinary anatomy learning (self-study, examinations, preparation for, and reflection on cadaver dissection). The quantitative data showed that first-year students with artistic preferences used drawing significantly more often in most aspects of anatomy learning than students with no such preferences, apart from the reported use of drawing in examinations and for reflection after cadaver dissection. The lack of significant correlations of the reported use of drawing in examinations with any other study variable provided support for the author's observation that student-generated drawings are not as commonly used in examinations as previously. In contrast to the study hypothesis, previous university studies did not correlate significantly with any aspect of the use of drawing in anatomy learning. None of the reported uses of drawing addressed the benefits of drawing in learning the comparative anatomy of animal species, a characteristic distinguishing veterinary anatomy from human anatomy. Qualitative student feedback indicated that encouragement and teacher-produced images would increase the use of drawing as a learning approach even if the implementation of drawing into the curriculum is not feasible. Conclusions from this study were implemented through self-directed learning in anatomy courses that replaced the canceled cadaveric dissections during the COVID-19 outbreak and also through the ongoing drawing workshops to further advance the use of drawing in veterinary anatomy learning.  相似文献   

7.
The professional behavior of future doctors is increasingly important in medical education. One of the first subjects in the curriculum to address this issue is gross anatomy. The Tuebingen Medical Faculty implemented a learning portfolio and a seminar on medical professionalism during the dissection course. The aims of this research project are to get an overview of how students form a professional identity in the dissection course and to compare the content of both their oral and written reflections on the course. A qualitative analysis was conducted of the oral and written reflections on the dissection laboratory experience. This study was conducted during winter term 2013/2014 with a cohort of 163 participants in the regular dissection course. Written reflection texts (from n = 96 students) and audio recordings from four oral reflection seminar discussions (with n = 11 students) were transcribed and deductively categorized with Mayring’s qualitative content analysis method. Both qualitative analyses show that students reflected on many topics relevant to professional development, including empathy, respect, altruism, compassion, teamwork, and self-regulation. Quantitative analysis reveals that students who attended the oral reflection wrote significantly more in their written reflection than students who did not. There is, however, no difference in the reflection categories. Reflection content from students corresponds with categories derived from existing competency frameworks. Both the seminar (oral reflections) and the learning portfolio (written reflections) present excellent opportunities to foster professional development during anatomy education; the key is using them in conjunction with the dissection course.  相似文献   

8.
While time spent on anatomical education in medical school curricula has been diminishing over the last decades, the recognized role of anatomical dissection has expanded. It is perceived by many students and faculty not only as the means of learning the structure and function of the human body, but also as an opportunity for the acquisition of professional competencies such as team work, patient–doctor interaction, medical epistemology, self-awareness, and an understanding of medical ethics. This viewpoint article proposes that this learning process can be supported effectively through studying examples from the history of anatomy, as insights from this history can help illuminate contemporary ethical issues in anatomy and medicine. Anatomical education can thus provide not only the opportunity of gaining awareness of ethical questions, but also a chance to practice these new insights within the protected environment of the laboratories, in interaction with the dead and the living. Consequently, a new role has developed for anatomists, which includes the interweaving of the scholarly exploration of the history and ethics of anatomy with the practical application of research results into a reframed concept of anatomical education. Anatomy, as a foundational discipline in the medical curriculum, can thus provide a first step on the educational path of empathetic and humane medical caregivers.  相似文献   

9.
Anatomy has historically been a cornerstone in medical education regardless of nation or specialty. Until recently, dissection and didactic lectures were its sole pedagogy. Teaching methodology has been revolutionized with more reliance on models, imaging, simulation, and the Internet to further consolidate and enhance the learning experience. Moreover, modern medical curricula are giving less importance to anatomy education and to the acknowledged value of dissection. Universities have even abandoned dissection completely in favor of user‐friendly multimedia, alternative teaching approaches, and newly defined priorities in clinical practice. Anatomy curriculum is undergoing international reformation but the current framework lacks uniformity among institutions. Optimal learning content can be categorized into the following modalities: (1) dissection/prosection, (2) interactive multimedia, (3) procedural anatomy, (4) surface and clinical anatomy, and (5) imaging. The importance of multimodal teaching, with examples suggested in this article, has been widely recognized and assessed. Nevertheless, there are still ongoing limitations in anatomy teaching. Substantial problems consist of diminished allotted dissection time and the number of qualified anatomy instructors, which will eventually deteriorate the quality of education. Alternative resources and strategies are discussed in an attempt to tackle these genuine concerns. The challenges are to reinstate more effective teaching and learning tools while maintaining the beneficial values of orthodox dissection. The UK has a reputable medical education but its quality could be improved by observing international frameworks. The heavy penalty of not concentrating on sufficient anatomy education will inevitably lead to incompetent anatomists and healthcare professionals, leaving patients to face dire repercussions. Anat Sci Educ 3: 83–93, 2010. © 2010 American Association of Anatomists.  相似文献   

10.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

11.
Hands-on dissection-based learning of anatomy offers an unique and valued experience for medical students. Too often however, the inexperienced student's focus is to avoid damage to unfamiliar structures instead of understanding spatial relationships between structures. This results in unfortunate surrender of a critical learning experience. Additionally, approaches to dissection and anatomic exposure share little alignment to clinical approaches, making it less powerful in clinical applicability. The goal of this viewpoint commentary is based on the experience of the two authors and aims to demonstrate opportunity to introduce clinical approaches for dissection while incorporating relevant anatomical concepts in medical school curriculum that aligns with authentic healthcare practice. Using the dissections of the superficial face as a relevant and current topic of clinical interest, we point out that applying the currently performed dissection approach (medial-to-lateral) falls short of providing sufficient knowledge and understanding of the layered arrangement of facial structures. The lateral-to-medial approach, as performed in surgical face lifting procedures would offer a better understanding of the layers of the face and especially the superficial musculoaponeurotic system (SMAS) accounting for the difficulties of facial dissections on embalmed cadavers. This commentary could offer a potential change in paradigm for students and course facilitators for how to maximize the knowledge transfer during facial dissections. It potentially opens a door to rethink dissection-based learning of anatomy toward techniques and approaches that are aligned to surgical access pathways and thus considered more clinically relevant.  相似文献   

12.
The ability to mentally manipulate objects in three dimensions is essential to the practice of many clinical medical specialties. The relationship between this type of visual-spatial ability and performance in preclinical courses such as medical gross anatomy is poorly understood. This study determined if visual-spatial ability is associated with performance on practical examinations, and if students' visual-spatial ability improves during medical gross anatomy. Three hundred and fifty-two first-year medical students completed the Mental Rotations Test (MRT) before the gross anatomy course and 255 at its completion in 2008 and 2009. Hypotheses were tested using logistic regression analysis and Student's t-test. Compared with students in the lowest quartile of the MRT, students who scored in the highest quartile of the MRT were 2.2 [95% confidence interval (CI) 1.2 and 3.8] and 2.1 (95% CI 1.2 and 3.5) times more likely to score greater than 90% on practical examinations and on both practical and written examinations, respectively. MRT scores for males and females increased significantly (P < 0.0001). Measurement of students' pre-existing visual-spatial ability is predictive of performance in medical gross anatomy, and early intervention may be useful for students with low visual-spatial ability on entry to medical school. Participation in medical gross anatomy increases students' visual-spatial ability, although the mechanism for this phenomenon is unknown.  相似文献   

13.
Medical schools in the United States continue to undergo curricular change, reorganization, and reformation as more schools transition to an integrated curriculum. Anatomy educators must find novel approaches to teach in a way that will bridge multiple disciplines. The cadaveric extraction of the central nervous system (CNS) provides an opportunity to bridge gross anatomy, neuroanatomy, and clinical neurology. In this dissection, the brain, brainstem, spinal cord, cauda equina, optic nerve/tract, and eyes are removed in one piece so that the entire CNS and its gateway to the periphery through the spinal roots can be appreciated. However, this dissection is rarely, if ever, performed likely due to time constraints, perceived difficulty, and lack of instructions. The goals of this project were (i) to provide a comprehensive, step‐by‐step guide for an en bloc CNS extraction and (ii) to determine effective strategies to implement this dissection/prosection within modern curricula. Optimal dissection methods were determined after comparison of various approaches/tools, which reduced dissection time from approximately 10 to 4 hours. The CNS prosections were piloted in small group sessions with two types of learners in two different settings: graduate students studied wet CNS prosections within the dissection laboratory and medical students used plastinated CNS prosections to review clinical neuroanatomy and solve lesion localization cases during their neurology clerkship. In both cases, the CNS was highly rated as a teaching tool and 98% recommended it for future students. Notably, 90% of medical students surveyed suggested that the CNS prosection be introduced prior to clinical rotations. Anat Sci Educ 11: 185–195. © 2017 American Association of Anatomists.  相似文献   

14.
Anatomy education provides students with opportunities to learn structure and function of the human body, to acquire professional competencies such as teamwork, interpersonal skills, self-awareness, and to reflect on and practice medical ethics. The fulfillment of this wide potential can present challenges in courses that are part of an integrated curriculum and shorter than traditional courses. This new reality, together with students' increasing concern about the stresses within medical education, led to efforts at Harvard Medical School to implement practical steps toward an optimal learning environment in anatomy. These were based on core elements of ethical anatomy education and principles of trauma-informed care. Anatomy is conceptualized here as the “first clinical discipline,” with relational interactions between anatomical educators, medical students, and body donors/patients. Essential prerequisites for the implementation of this work were support by the medical school leadership, open partnership between engaged students and faculty, faculty coordination, and peer-teaching. Specific interventions included pre-course faculty development on course philosophy and invitations to students to share their thoughts on anatomy. Student responses were integrated in course introductions, combined with a pre-dissection laboratory visit, an introductory guide, and a module on the history and ethics of anatomy. During the course, team-building activities were scheduled, and self-reflection encouraged, for example, through written exercises, and elective life-body drawing. Students' responses to the interventions were overall positive, but need further evaluation. This first attempt of a systematic implementation of an optimal learning environment in anatomy led to the identification of areas in need of adjustment.  相似文献   

15.
Near-peer teaching is an educational format which utilizes tutors who are more advanced in a curriculum's content to supervise students' activities and to act as instructors in laboratory settings. This format is often used in anatomy laboratory courses. The goal of the present study is to describe the design and implementation of near-peer teaching in an anatomy course and to evaluate students' perceptions of the program. A total of 700 students were registered for this anatomy course which employed near-peer instructors. Of enrolled students, 558 (79.7%) agreed to participate in this study. In general, the practical section (e.g., the clinical hour, image-based anatomy session, and gross anatomy laboratory) of the course was viewed more favorably compared to the theory section (54.8%, n = 306), with dissection and prosection in the laboratory rated as the most valued experiences (34.9%, n = 195). Near-peer teaching is a viable option that satisfies the demands of modern curricula using small groups. This format stimulates learning within courses that have large numbers of students and low faculty-to-student ratios.  相似文献   

16.
Pathology and anatomy are both sciences that contribute to the foundations of a successful medical career. In the past decade, medical education has undergone profound changes with the development of a core curriculum combined with student selected components. There has been a shift from discipline‐based teaching towards problem‐based learning. Both anatomy and pathology are perceived to have suffered from this educational shift. The challenge is to introduce methods of learning for these subjects into an integrated student‐centered curriculum. The purpose of this study was to determine the prevalence of pathology in 12 donor cadavers in the dissecting room of the Bute Medical School, University of St Andrews. All of the cadavers had multiple pathologies (between three to four conditions) ranging from common to rare disorders. A number of prostheses and surgical interventions were also noted. This small study confirms that cadaveric dissection provides an excellent opportunity for the integration of anatomy, pathology, and clinical medicine into the early clinical training of undergraduate medical students. The identification of disease in a cadaver provides an excellent introduction to the gross features of a disease process, but does not substitute for the detailed study of a process later in the curriculum. Anat Sci Educ 3: 97–100, 2010. © 2010 American Association of Anatomists.  相似文献   

17.
Cadaveric prosections are effective learning tools in anatomy education. They range from a fully dissected, sometimes plastinated, complete cadaver (in situ prosections), to a single, carefully dissected structure detached from a cadaver (ex situ prosections). While most research has focused on the advantages and disadvantages of dissection versus prosection, limited information is available on the instructional efficacy of different prosection types. This contribution explored potential differences between in situ and ex situ prosections regarding the ability of undergraduate students to identify anatomical structures. To determine if students were able to recognize the same anatomical structure on both in situ and ex situ prosections, or on either one individually, six structures were tagged on both prosection types as part of three course summative examinations. The majority of students (61%–68%) fell into one of the two categories: those that recognized or failed to recognize the same structure on both in situ and ex situ prosections. The percentage of students who recognized a selected structure on only one type of prosection was small (1.6%–31.6%), but skewed in favor of ex situ prosections (P ≤ 0.01). These results suggest that overall students' identification ability was due to knowledge differences, not the spatial or contextual challenges posed by each type of prosection. They also suggest that the relative difficulty of either prosection type depends on the nature of the anatomical structure. Thus, one type of prosection might be more appropriate for teaching some structures, and therefore the use of both types is recommended.  相似文献   

18.
Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third‐year medical students completed a 20–25‐question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first‐year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. Anat Sci Educ 7: 461–468. © 2014 American Association of Anatomists.  相似文献   

19.
Three-dimensional virtual technology (3DVT) educational tools and peer-tutoring have proven to be effective teaching strategies in improving student learning outcomes. The purpose of this study was threefold: (1) compare the anatomy academic performance between underrepresented minority (URM) and non-minority (non-URM) students, (2) compare the voluntary use of 3DVT dissection videos and peer-mentoring between these two cohorts, and (3) estimate the association between the use of these teaching strategies on anatomy examinations and course grades at a school of physical therapy. Three-dimensional virtual technology narrated dissection videos and peer-mentoring were made available to all students. Time accessing the video and attending peer-mentoring sessions was measured throughout the course for all students. Three practical and four written examinations and the final course grade were calculated. Numerous one-way ANOVAs were used to compare examination/course grades between student cohorts (URM and non-URM) and usage of the two educational strategies (3DVT and peer-mentoring). Multiple linear regressions were performed with teaching strategies as predictors and grades as outcomes. Underrepresented minority students demonstrated significantly lower practical examination scores (P = 0.04), lower final course grades (P = 0.01), and a greater use of mentorship hours (P = 0.001) compared to non-URM. The regression models with both predictors (3DVT and peer-mentoring) combined demonstrated the greatest association with grades for both URM and non-URM. For both groups of students, the association between predictors and practical examination scores, although fair, was not statistically significant. Peer-mentoring seems to be the most effective teaching strategy in helping URM students succeed in anatomy.  相似文献   

20.
With integrated curricula and multidisciplinary assessments becoming more prevalent in medical education, there is a continued need for educational research to explore the advantages, consequences, and challenges of integration practices. This retrospective analysis investigated the number of items needed to reliably assess anatomical knowledge in the context of gross anatomy and histology. A generalizability analysis was conducted on gross anatomy and histology written and practical examination items that were administered in a discipline‐based format at Indiana University School of Medicine and in an integrated fashion at the University of Alabama School of Medicine and Rush University Medical College. Examination items were analyzed using a partially nested design in which items were nested within occasions (i:o) and crossed with students (s). A reliability standard of 0.80 was used to determine the minimum number of items needed across examinations (occasions) to make reliable and informed decisions about students' competence in anatomical knowledge. Decision study plots are presented to demonstrate how the number of items per examination influences the reliability of each administered assessment. Using the example of a curriculum that assesses gross anatomy knowledge over five summative written and practical examinations, the results of the decision study estimated that 30 and 25 items would be needed on each written and practical examination to reach a reliability of 0.80, respectively. This study is particularly relevant to educators who may question whether the amount of anatomy content assessed in multidisciplinary evaluations is sufficient for making judgments about the anatomical aptitude of students. Anat Sci Educ 10: 109–119. © 2016 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号