首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel H filter design methodology has been presented for a general class of nonlinear systems. Different from existing nonlinear filtering design, the nonlinearities are approximated using neural networks, and then are modeled based on linear difference inclusions, which makes the structure of the desired filter simpler and parameter turning easier and has the advantages of guaranteed stability, numeral robustness, bounded estimation accuracy. A unified framework is established to solve the addressed H filtering problem by exploiting linear matrix inequality (LMI) approach. A numerical example shows that the filtering error systems will work well against bounded error between a nonlinear dynamical system and a multilayer neural network.  相似文献   

2.
This paper is concerned with the design of dissipative state observers for a family of time-delay nonlinear systems. The Dissipativity method, proposed by one of the authors for delay-free nonlinear systems, is extended here to a class of time-delay nonlinear systems. The design method consists in decomposing the time-delay estimation error dynamics into a time-delay linear subsystem and a time-varying memoryless nonlinearity, connected in a negative feedback loop. By using some storage functionals, both delay-independent and delay-dependent dissipativity criteria are derived in order to guarantee the exponential convergence property of the observer. The exponential stability of the estimation error is then ensured, assuming that the nonlinearity is dissipative with respect to a quadratic supply rate and the linear part is designed, through the observer gains, to be dissipative with respect to a complementary supply rate. The design conditions are formulated in terms of tractable bilinear (BMI’s) or linear matrix inequalities (LMI’s). An interesting advantage is that the proposed dissipative design extends and generalizes under a unified framework several methods available in the literature, since a wide diversity of nonlinearities can be considered. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

3.
A unified theory is presented for obtaining the transient response of nth order nonlinear systems with small nonlinearities by Krylov-Bogoliubov-Mitropolskii method. The method is a generalization of Bogoliubov's asymptotic method and covers all three cases when the roots of the corresponding linear equation are real, complex conjugate, or purely imaginary. It is shown that by suitable substitution for the roots in the general result that the solution corresponding to each of the three cases can be obtained. The method is illustrated by examples.  相似文献   

4.
In this paper, a new approach to robust H filtering for a class of nonlinear systems with time-varying uncertainties is proposed in the LMI framework based on a general dynamical observer structure. The nonlinearities under consideration are assumed to satisfy local Lipschitz conditions and appear in both state and measured output equations. The admissible Lipschitz constants of the nonlinear functions are maximized through LMI optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics with prespecified disturbance attenuation level and is robust against time-varying parametric uncertainties as well as Lipschitz nonlinear additive uncertainty.  相似文献   

5.
This article considers the problem of prescribed-time stabilization for a class of uncertain high-order nonlinear systems (i.e., systems in the p-normal form) with a pre-specified asymmetric output constraint. A core ingredient, tangent-type barrier function, is proposed first by skillfully excavating and assimilating the inherent properties of system nonlinearities. Based on the barrier function, as well as a serial of nested signum functions, the celebrated technique of adding a power integrator is renovated finely to establish a new design approach by which a continuous state feedback prescribed-time stabilizer, along with a tangent-type asymmetric barrier Lyapunov function, can be constructed in a systematic fashion, thereby guaranteeing the performance of prescribed-time state convergence and ensuring the fulfillment of pre-specified output constraints surely. Benefiting from the composite characteristics of the presented tangent-type barrier Lyapunov function and the signum functions, the proposed approach further offers a unified nature in design enabling us to organize a prescribed-time stabilizer that is simultaneously valid and executable for the system undergone or free from output constraints, without the need of changing the controller structure. The effectiveness and superiority of the developed approach are illustrated by a numerical example.  相似文献   

6.
This paper is concerned with the problem of observer design for a class of discrete-time Lipschitz nonlinear state delayed systems with, or without parameter uncertainty. The nonlinearities are assumed to appear in both the state and measured output equations. For both the cases with and without norm-bounded time-varying parameter uncertainties, a design method is proposed, which involves solving a linear matrix inequality (LMI). When a certain LMI is satisfied, the explicit expression of a desired nonlinear observer is also presented. An example is provided to demonstrate the applicability of the proposed approach.  相似文献   

7.
In this paper, an innovative piezo-hydraulic actuator (PHA) is considered that is intended to realize a fully variable valve control in camless combustion engines. A nonlinear model of the hydraulic system part is presented along with linear models of the remaining system parts. Accurate tracking of desired valve trajectories as well as soft landing despite disturbance forces and measurement noise is achieved using a combined control strategy. It consists of an input–output linearization of the nonlinear part as well as feedforward and linear quadratic integral (LQI) feedback control of the linear system part. Given measurements of the valve spool and engine valve positions, a Cascaded Extended Kalman Filter (CEKF) structure provides estimates for the immeasurable states. Simulation results confirm the effectiveness of the proposed approach.  相似文献   

8.
A robust low-complexity design methodology is presented for global tracking of uncertain high-order nonlinear systems with unknown time-varying delays. In contrast to the existing literature, this paper assumes that nonlinear bounding functions of time-delay nonlinearities and high powers of virtual and actual control variables are unknown. Furthermore, a delay-independent tracking scheme using nonlinearly transformed error surfaces is simply designed without the knowledge of nonlinear bounding functions of model nonlinearities, the adaptive technique, and the calculation of repeated time derivatives of certain signals. Thus, the proposed tracker is implemented with low complexity. It is recursively shown that the tracking error is preserved within the predefined bounds of transient and steady-state performance in the Lyapunov sense.  相似文献   

9.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

10.
An algorithm for constructing a black box model of the sinusoidal input/steady-state response behavior of nonlinear time-invariant systems over a set of frequencies and amplitudes is presented. It is assumed that the steady-state response is periodic of the same fundamental frequency as the excitation, and that the Fourier coefficients are continuous functions of amplitude and square-integrable functions of frequency. The algorithm converges, in a mean-square sense, to an exact representation of the first N harmonics of the steady-state response minus its d.c. component. The model constructed by the algorithm admits a relatively simple physical realization characterized by 2NM+1 linear dynamic elements, and N(2M+1)+1 nonlinear static elements. The underlying mathematical structure of the model is an orthogonal series expansion relative to time whose coefficients are themselves truncated orthogonal expansions relative to frequency. Here M, the number of harmonics used for frequency interpolation, is determined by the algorithm. Of the N(2M+1)+1 memoryless nonlinearities which characterize the model, N of these are specified ahead of time (Tchebysheff polynomials), and 2NM+1 are parameters which mold the representation to the specific system being modeled. Each of these functions of a single variable can be obtained in a pointwise manner directly from steady-state measurements. The algorithm was implemented on a digital computer, and forced versions of the classic equations of van der Pol and Duffing were run as examples. An additional analytic example of a frequency multiplier of prescribed bandwidth was also presented.  相似文献   

11.
This work analyzes the limit cycle phenomena of nonlinear sampled-data systems by applying the methods of gain-phase margin testing, the M-locus and the parameter plane. First, a sampled-data control system with nonlinear elements is linearized by the classical method of describing functions. The stability of the equivalent linearized system is then analyzed using the stability equations and the parameter plane method, with adjustable parameters. After the gain-phase margin tester has been added to the forward open-loop system, exactly how the gain-phase margin and the characteristics of the limit cycle are related can be elicited by determining the intersections of the M-locus and the constant gain and phase boundaries. A concise method is presented to solve this problem. The minimum gain-phase margin of the nonlinear sampled-data system at which a limit cycle can occur is investigated. This work indicates that the procedure can be easily extended to analyze the limit cycles of a sampled-data system from a continuous-data system cases considered in the literature. Finally, a sampled-data system with multiple nonlinearities is illustrated to verify the validity of the procedure.  相似文献   

12.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

13.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

14.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

15.
A class of discrete-time nonlinear system and measurement equations having incrementally conic nonlinearities and finite energy disturbances is considered. A linear matrix inequality-based design approach is presented, which guarantees the satisfaction of a variety of performance criteria ranging from simple estimation error boundedness to dissipativity. Some simulation examples are included to illustrate and provide support to the proposed design methodology.  相似文献   

16.
In order to improve the response speed and control precision of the braking system with parameters uncertainty and nonlinear friction, a braking-by-wire system based on the electromagnetic direct-drive valve and a novel cascade control algorithm was proposed in this paper. An electromagnetic linear actuator directly drives the valve spool and rapidly adjusts the pressure of braking wheel cylinders. A dynamic model of electromagnetic direct-drive valve considering improved LuGre dynamic friction is established. A novel cascade control algorithm with an outside loop pressure fuzzy controller and an inside loop electromagnetic direct-drive valve position controller was proposed. An adaptive integral robust inside loop controller is designed by combining friction compensation adaptive control law, linear feedback, and integral robust control. The uncertainty parameters and the friction state are estimated online. The stability of the cascade controller is proved by the Lyapunov method. Then a multi-objective opitimizemization design method of control parameters is proposed, which combines a multi-objective game theory and a technique for order preference by similarity to ideal solution (TOPSIS) based on entropy weight. The results show that the pressurization time of cascade control is less than 0.09 s under the 15 MPa step target signal. The control precision is improved effectively by the cascade controller under the ARTEMIS condition.  相似文献   

17.
This paper presents a simplified design methodology for robust event-driven tracking control of uncertain nonlinear pure-feedback systems with input quantization. All nonlinearities and quantization parameters are assumed to be completely unknown. Different from the existing event-driven control approaches for systems with completely unknown nonlinearities, the main contribution of this paper is to design a simple event-based tracking scheme with preassigned performance, without the use of adaptive function approximators and adaptive mirror models. It is shown in the Lyapunov sense that the proposed event-driven low-complexity tracker consisting of nonlinearly transformed error surfaces and a triggering condition can achieve the preselected transient and steady-state performance of control errors in the presence of the input quantization.  相似文献   

18.
The use of analogies is often advantageous in design and in the prediction of the behavior of complex systems. As developed previously, each component in the model (analog) corresponds to a specific component in the prototype (original system). However, this condition is a consequence of using linear relationships between model and prototype. If the condition of linearity is relaxed, the analog may have components which do not correspond to components in the prototype. Consequently, greater freedom is realized in design of the analog making it possible to overcome conflicting design requirements. Application of the nonlinear prediction equations to a forced vibrating system illustrates the general principles involved.  相似文献   

19.
A modified and compact form of Krylov-Bogoliubov-Mitropolskii (KBM) unified method is extended to obtain approximate solution of an nth order, n=2,3,…, ordinary differential equation with small nonlinearities when unperturbed equation has some repeated real eigenvalues. The existing unified method is used when the eigenvalues are distinct whether they are purely imaginary or complex or real. The new form is presented generalizing all the previous formulae derived individually for second-, third- and fourth-order equations to obtain undamped, damped, over-damped and critically damped solutions. Therefore, all types of oscillatory and non-oscillatory solutions are determined by suitable substitution of the eigenvalues in a general result. The formulation of the method is very simple and the determination of the solution is easy. The method is illustrated by an example of a fourth-order equation when unperturbed equation has two real and equal eigenvalues. The solution agrees with a numerical solution nicely. Moreover, this solution is useful when the differences between conjugate eigenvalues (real or complex) are small. Thus the method is a complement of the existing modified and compact form of KBM method.  相似文献   

20.
In this paper, we develop a unified framework to find state-feedback control laws that solve two-player zero-sum differential games over the infinite time horizon and guarantee partial-state asymptotic stability of the closed-loop system. Partial-state asymptotic stability is guaranteed by means of a Lyapunov function that is positive definite and decrescent with respect to part of the system state. The existence of a saddle point for the system?s performance measure is guaranteed by the fact that this Lyapunov function satisfies a partial differential equation that corresponds to a steady-state form of the Hamilton–Jacobi–Isaacs equation. In the second part of this paper, we show how our differential game framework can be applied not only to solve pursuit-evasion and robust optimal control problems, but also to assess the effectiveness of a model reference adaptive control law. Specifically, the model reference adaptive control architecture is designed to guarantee satisfactory trajectory tracking for uncertain nonlinear dynamical systems, whose matched nonlinearities are captured by the regressor vector. By modeling matched and unmatched nonlinearities, which are not captured by the regressor vector, as the pursuer?s and evader?s control inputs in a differential game, we provide an explicit characterization of the system?s uncertainties that do not disrupt the trajectory tracking capabilities of the adaptive controller. Two numerical examples illustrate the applicability of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号