首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three-dimensional virtual technology (3DVT) educational tools and peer-tutoring have proven to be effective teaching strategies in improving student learning outcomes. The purpose of this study was threefold: (1) compare the anatomy academic performance between underrepresented minority (URM) and non-minority (non-URM) students, (2) compare the voluntary use of 3DVT dissection videos and peer-mentoring between these two cohorts, and (3) estimate the association between the use of these teaching strategies on anatomy examinations and course grades at a school of physical therapy. Three-dimensional virtual technology narrated dissection videos and peer-mentoring were made available to all students. Time accessing the video and attending peer-mentoring sessions was measured throughout the course for all students. Three practical and four written examinations and the final course grade were calculated. Numerous one-way ANOVAs were used to compare examination/course grades between student cohorts (URM and non-URM) and usage of the two educational strategies (3DVT and peer-mentoring). Multiple linear regressions were performed with teaching strategies as predictors and grades as outcomes. Underrepresented minority students demonstrated significantly lower practical examination scores (P = 0.04), lower final course grades (P = 0.01), and a greater use of mentorship hours (P = 0.001) compared to non-URM. The regression models with both predictors (3DVT and peer-mentoring) combined demonstrated the greatest association with grades for both URM and non-URM. For both groups of students, the association between predictors and practical examination scores, although fair, was not statistically significant. Peer-mentoring seems to be the most effective teaching strategy in helping URM students succeed in anatomy.  相似文献   

2.
The aim of this study was to investigate the effect of immersive three-dimensional (3D) interactive virtual reality (VR) on anatomy training in undergraduate physical therapy students. A total of 72 students were included in the study. The students were randomized into control (n = 36) and VR (n = 36) group according to the Kolb Learning Style Inventory, sex, and Purdue Spatial Visualization Test Rotations (PSVT-R). Each student completed a pre-intervention and post-intervention test, consisting of 15 multiple-choice questions. There was no significant difference between the two groups in terms of age, sex, Kolb Learning Style Inventory distribution, and the PSVT-R (P > 0.05). The post-test scores were significantly higher compared to pre-test scores in both the VR group (P < 0.001) and the control group (P < 0.001). The difference between the pre-test and post-test results was found to be significantly higher in favor of the VR group (P < 0.001). In this study, anatomy training with a 3D immersive VR system was found to be beneficial. These results suggest that VR systems can be used as an alternative method to the conventional anatomy training approach for health students.  相似文献   

3.
Three-dimensional (3D) digital anatomical models show potential to demonstrate complex anatomical relationships; however, the literature is inconsistent as to whether they are effective in improving the anatomy performance, particularly for students with low spatial visualization ability (Vz). This study investigated the educational effectiveness of a 3D stereoscopic model of the pelvis, and the relationship between learning with 3D models and Vz. It was hypothesized that participants learning with a 3D pelvis model would outperform participants learning with a two-dimensional (2D) visualization or cadaveric specimen on a spatial anatomy test, particularly when comparing those with low Vz. Participants (n = 64) were stratified into three experimental groups, who each attended a learning session with either a 3D stereoscopic model (n = 21), 2D visualization (n = 21), or cadaveric specimen (n = 22) of the pelvis. Medical and pre-medical student participants completed a multiple-choice pre-test and post-test during their respective learning session, and a long-term retention (LTR) test 2 months later. Results showed no difference in anatomy test improvement or LTR performance between the experimental groups. A simple linear regression analysis showed that within the 3D group, participants with high Vz tended to retain more than those with low Vz on the LTR test (R2 = 0.31, P = 0.01). The low Vz participants may be cognitively overloaded by the complex spatial cues from the 3D stereoscopic model. Results of this study should inform resource selection and curriculum design for health professional students, with attention to the impact of Vz on learning.  相似文献   

4.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

5.
Students' motivation is a vital determinant of academic performance that is influenced by the learning environment. This study aimed to assess and analyze the motivation subscales between different cohorts (chiropractic, dental, medical) of anatomy students (n = 251) and to investigate if these subscales had an effect on the students' anatomy performance. A 31-item survey, the Motivated Strategies for Learning Questionnaire was utilized, covering items on intrinsic and extrinsic goal orientation, task value, control of learning belief, self-efficiency for learning and performance, and test anxiety. First-year dental students were significantly more anxious than chiropractic students. Second-year chiropractic students attached more value to anatomy education than second-year medical students. The outcome of this research demonstrated a significant relationship between first- and second-year chiropractic students between anatomy performance and motivation subscales controlling for gender such as self-efficacy for learning and performance was (β = 8, CI: 5.18–10.8, P < 0.001) and (β = 6.25, CI: 3.40–9.10, P < 0.001) for first year and second year, respectively. With regards to intrinsic goal orientation, it was (β = 4.02, CI: 1.19–6.86, P = 0.006) and (β = 5.38, CI: 2.32–8.44, P = 0.001) for first year and second year, respectively. For the control of learning beliefs, it was (β = 3.71, 95% CI: 0.18–7.25, P = 0.04) and (β = 3.07, CI: 0.03–6.12, P = 0.048) for first year and second year, respectively. Interventions aimed at improving these motivation subscales in students could boost their anatomy performance.  相似文献   

6.
A student's own body provides an often disregarded site of knowledge production and corporeal wisdom. Learning via cognitive processes anchored in physical movement and body awareness, known as embodied learning, may aid students to visualize structures and understand their functions and clinical relevance. Working from an embodied learning perspective, the current article evaluates the use of an offline physical learning tool (Anatomical Glove Learning System; AGLS) for teaching hand anatomy for clinical application in medical students. Two student samples (N1 = 105; N2 = 94) used the AGLS in two different ways. In the first sample, the AGLS was compared to a traditional approach using hand bones, models and prosected specimens. Secondly, the AGLS and traditional approach were combined. The evaluation consisted of three outcomes: short-term learning (post-test), medium-term applications (mock-objective structured clinical examination, MOSCE), and longer-term assessment (objective structured clinical examination, OSCE). Findings from the first sample indicated no significant differences between the AGLS and traditional laboratory groups on short- (F(1,78) = 0.036, P = 0.849), medium- (F(1,50) = 0.743, P = 0.393), or longer-term (F(1,82) = 0.997, P = 0.321) outcomes. In the second sample using the AGLS in combination with a traditional approach was associated with significantly better short-term post-test scores (F(2,174) = 5.98, P = 0.003) than using the AGLS alone, but demonstrated no effect for long-term OSCE scores. These results suggest an embodied learning experience alone does not appear to be advantageous to student learning, but when combined with other methods for studying anatomy there are learning gains.  相似文献   

7.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

8.
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

9.
Gross anatomy is a source of anxiety for matriculating medical students due to the large volume of information presented in a truncated timeline, and because it may be their first exposure to human cadavers. This study aimed to assess if video-based resources would affect matriculating medical students' anatomy state anxiety levels. Videos were designed to be short, YouTube-based units that served to provide orientation information about the anatomy course, dissection facilities, and available study resources to dispel anxiety around beginning their anatomy studies. To evaluate the impact of the videos, students in two consecutive matriculating years (2018 and 2019) completed the validated State-Trait Anxiety Inventory and a demographic questionnaire. The 2019 cohort (n = 118) served as the experimental group with access to the videos; while the 2018 cohort (n = 120) without video access served as a historical control. Analyses revealed that the groups were equivalent in terms of trait anxiety (P = 0.854) and anatomy state anxiety even when student video exposure was controlled (P = 0.495). Anatomy state anxiety was only significantly lower in students with prior formal anatomy exposure (P = 0.006). Further inquiry into students' prior anatomy experience identified that individuals with post-secondary dissection experience were significantly less anxious than those without formal anatomical experience (P = 0.023). These results may serve as a cautionary tale to educators; while preference for video-based instructional materials is prevalent in the literature, videos delivered on public social media platforms fail to prepare students for the psychological impact of studying human anatomy.  相似文献   

10.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

11.
Anatomy is an essential subject of the medical curriculum. Despite its relevance, the curricular time and logistical resources devoted to teaching anatomy are in decline, favoring the introduction of new pedagogical approaches based on computer-assisted learning (CAL). This new pedagogical approach provides an insight into students' learning profiles and features, which are correlated with knowledge acquisition. The aim of this study was to understand how training with CAL platforms can influence medical students' anatomy performance. A total of 611 medical students attending Musculoskeletal Anatomy (MA) and Cardiovascular Anatomy (CA) courses were allocated to one of three groups (MA Group, CA Group, and MA + CA Group). An association between the performance in these anatomy courses and the number of CAL training sessions was detected. In the MA Group (r = 0.761, P < 0.001) and the MA + CA Group (r = 0.786, P < 0.001), a large positive correlation was observed between musculoskeletal anatomy performance and the number of CAL training sessions. Similarly, in the CA Group (r = 0.670, P < 0.001) and the MA + CA Group (r = 0.772, P < 0.001), a large positive correlation was observed between cardiovascular anatomy performance and the number of CAL training sessions. Multiple linear regression models were performed, considering either musculoskeletal or cardiovascular anatomy performance as the dependent variable. The results suggest that using CAL platforms to study has a positive dose-dependent effect on anatomy performance. Understanding students' individual features and academic background may contribute to the optimization of the learning process.  相似文献   

12.
Many institutions rely upon prosection-based laboratories as more resource-efficient and time-effective alternatives to traditional cadaver dissection for human anatomy education. To facilitate growing enrollment numbers despite resource limitations, the University of Guelph (a non-medical institution) introduced a modified “stepwise” prosection-based laboratory cohort to supplement a dissection-based course. In this design, all students attended the same lectures, but those in the dissection-based cohort learned by performing regional dissections and students in the prosection-based cohort studied from those dissections. Prosection students thereby witnessed a “slow reveal” of structures throughout the course. This study compared the perceived course experiences, student approaches to learning, and academic performance between the two groups. Multiple linear regression analyses were used to isolate the effect of the laboratory environment on student approaches to learning and academic performance from demographic and situational covariates. Both groups reported positive course experience ratings and high average final grades that were not statistically dissimilar (P > 0.05), increased reliance on deep approaches to learning (P = 0.002), and decreased reliance on surface approaches to learning (P = 0.023). When controlling for covariates, participation in dissection had small but statistically significant positive associations with deep approaches to learning (P = 0.043), performance on laboratory oral assessments (P < 0.001), and average final grades (P = 0.039). Ultimately, both designs promoted meaningful learning and desirable performance outcomes, indicating that both dissection and stepwise prosection have the potential to facilitate high quality human anatomy instruction.  相似文献   

13.
To examine the implications of the transition from face-to-face to online learning from a psychobiological perspective, this study investigated potential differences in physiological stress parameters of students engaged in online or face-to-face learning and determined whether these can be identified as possible mediators between learning experience and achievement emotions. In a randomized experimental field study, medical students (n = 82) attended either regular face-to-face classes of the microscopic anatomy course or the same practical course online using Zoom videoconferencing platform. The present study investigated Heart Rate Variability (HRV) and salivary cortisol concentration as stress correlates, within the contexts of online and face-to-face learning and compared these parameters with a control group that was measured at rest. Additionally, participants completed a standardized questionnaire about their experienced emotions in relation to task achievement and subjective stress levels. A significant reduction in HRV was found in face-to-face learning, suggesting stronger stress responses in the face-to-face learning environment (η2 = 0.421, P < 0.001). Furthermore, participants engaged in face-to-face learning showed significantly higher cortisol concentrations (η2 = 0.115, P = 0.032). Additionally, increased sympathetic activation correlated with the discrete positive emotion of enjoyment exclusively within the face-to-face condition (r = 0.365, P = 0.043). These results indicate that the transfer of a face-to-face practical course in microscopic anatomy to an online learning environment is associated with decreased sympathetic and enhanced vagal cardiovascular influences, together with lower cortisol concentrations in healthy medical students.  相似文献   

14.
Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands‐on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet‐based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P < 0.05), dizziness (40% in VR, P < 0.001), or blurred vision (35% in VR, P < 0.01). Both VR and AR are as valuable for teaching anatomy as tablet devices, but also promote intrinsic benefits such as increased learner immersion and engagement. These outcomes show great promise for the effective use of virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549–559. © 2017 American Association of Anatomists.  相似文献   

15.
16.
Cadaver-specific postmortem computed tomography (PMCT) has become an integral part in anatomy teaching at several universities. Recently, the feasibility of contrast-enhanced (CE)-PMCT has been demonstrated. The purpose of this study was to identify particular strengths and weaknesses of both non-enhanced and contrast-enhanced PMCT compared to conventional cadaver dissection. First, the students’ perception of the learning effectiveness of the three different modalities have been assessed using a 34-item survey (five-point Likert scale) covering all anatomy course modules. Results were compared using the nonparametric Friedman Test. Second, the most frequent artifacts in cadaver CT scans, were systematically analyzed in 122 PMCT and 31 CE-PMCT data sets to quantify method-related limitations and characteristics. Perfusion quality was assessed in 57 vascular segments (38 arterial and 19 venous). The survey was answered by n = 257/320 (80.3%) students. Increased learning benefits of PMCT/ CE-PMCT compared to cadaver dissection were found in osteology (2/3 categories, P < 0.001), head and neck (2/5 categories, P < 0.01), and brain anatomy (3/3 categories, P < 0.01). Contrast-enhanced-PMCT was perceived particularly useful in learning vascular anatomy (10/10 categories, P < 0.01). Cadaver dissection received significantly higher scores compared to PMCT and CE-PMCT in all categories of the abdomen and thorax (7/7 categories, P < 0.001), as well as the majority of muscular anatomy (5/6 categories, P < 0.001). Frequent postmortem artifacts (total n = 28, native-phase n = 21, contrast injection-related n = 7) were identified and assessed. The results of this work contribute to the understanding of the value of integrating cadaver-specific PMCT in anatomy teaching.  相似文献   

17.
Recent advance in medical education is in correlation with the advances in information technology and thus computer-based learning is being increasingly employed. The objective of the present study was to design and evaluate an e-learning module in anatomy and assess the perceptions of students and faculty about this e-learning module. The participating students were randomized into three groups by block stratified randomization and Google groups were created for each of the three groups. The e-learning module was implemented in three sessions by rotating the three groups. Validated questionnaires were sent to faculty and participating students via Google forms to obtain feedback. The results of ANOVA showed that there was a significant difference among the groups in terms of marks obtained with conventional (F = 2.403, P = 0.103), online (F = 6.050, P = 0.005), and blended (F = 5.801, P = 0.006). Post hoc comparisons using the Tukey HSD test, about the gain of knowledge, indicated that the results were insignificant when comparing the conventional group with the online group, but were significant when comparing the blended group with the conventional and online group. The qualitative data regarding the perception of students toward e-learning were analyzed using thematic analysis. The introduction of an interactive e-learning module in anatomy was effective and well received by the students and faculty. The study showed that blended learning has a positive impact on the students' learning by improving cognitive gain and receptive perception for e-learning.  相似文献   

18.
Polarized light imaging (PLI) is a new method which quantifies and visualizes nerve fiber direction. In this study, the educational value of PLI sections of the human brainstem were compared to histological sections stained with Luxol fast blue (LFB) using e-learning modules. Mental Rotations Test (MRT) was used to assess the spatial ability. Pre-intervention, post-intervention, and long-term (1 week) anatomical tests were provided to assess the baseline knowledge and retention. One-on-one electronic interviews after the last test were carried out to understand the students’ perceptions of the intervention. Thirty-eight medical students, (19 female and 19 males, mean age 21.5 ± SD 2.4; median age: 21.0 years) participated with a mean MRT score of 13.2 ± 5.2 points and a mean pre-intervention knowledge test score of 49.9 ± 11.8%. A significant improvement in both, post-intervention and long-term test scores occurred after learning with either PLI or LFB e-learning module on brainstem anatomy (both P < 0.001). No difference was observed between groups in post-intervention test scores and long-term test scores (P = 0.913 and P = 0.403, respectively). A higher MRT-score was significantly correlated with a higher post-intervention test score (rk = 0.321; P < 0.05, respectively), but there was not a significant association between the MRT- and the long-term scores (rk = −0.078; P = 0.509). Interviews (n = 10) revealed three major topics: Learning (brainstem) anatomy by use of e-learning modules; The “need” of technological background information when studying brainstem sections; and Mnemonics when studying brainstem anatomy. Future studies should assess the cognitive burden of cross-sectional learning methods with PLI and/or LFB sections and their effects on knowledge retention.  相似文献   

19.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

20.
Spatial understanding of complex anatomical concepts is often a challenge for learners, as well as for educators. It is even more challenging for students with low mental spatial abilities. There are many options to teach spatial relationships, ranging from simple models to high-end three-dimensional (3D) virtual reality tools. Using a randomized controlled trial design, this study explored the use of a unique combination of deictic and iconic hand gestures to enhance spatial anatomical understanding, coining the term “Air Anatomy”. The control group (n = 45) was given a lecture on the anatomy of extraocular muscles, while the intervention group (n = 49) received the same lecture including “Air Anatomy” hand gestures. When compared to the control group, the post-test scores for the intervention group were significantly higher for basic recall (P < 0.001; Mann–Whitney U test) and for the application of knowledge (P = 0.015; Mann–Whitney U test). Students with low to moderate spatial ability (as assessed by a mental rotation test) were found to benefit most by this technique. Students in the intervention group also reported a lower extrinsic cognitive load and higher germane load, when compared to the control group. An instructional skills questionnaire survey indicated the effectiveness of this technique in improving overall classroom experience. Feedback of the students in the intervention group was also favorable for instruction using “Air Anatomy”. The study suggests that “Air Anatomy” is a useful, “no-cost”, accessible method that aids spatial understanding of anatomical concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号