首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on‐going. We hypothesize that three‐dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi‐colored and multi‐material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ~1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi‐colored, multi‐material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54–64. © 2017 American Association of Anatomists.  相似文献   

2.
Medical schools in the United States continue to undergo curricular change, reorganization, and reformation as more schools transition to an integrated curriculum. Anatomy educators must find novel approaches to teach in a way that will bridge multiple disciplines. The cadaveric extraction of the central nervous system (CNS) provides an opportunity to bridge gross anatomy, neuroanatomy, and clinical neurology. In this dissection, the brain, brainstem, spinal cord, cauda equina, optic nerve/tract, and eyes are removed in one piece so that the entire CNS and its gateway to the periphery through the spinal roots can be appreciated. However, this dissection is rarely, if ever, performed likely due to time constraints, perceived difficulty, and lack of instructions. The goals of this project were (i) to provide a comprehensive, step‐by‐step guide for an en bloc CNS extraction and (ii) to determine effective strategies to implement this dissection/prosection within modern curricula. Optimal dissection methods were determined after comparison of various approaches/tools, which reduced dissection time from approximately 10 to 4 hours. The CNS prosections were piloted in small group sessions with two types of learners in two different settings: graduate students studied wet CNS prosections within the dissection laboratory and medical students used plastinated CNS prosections to review clinical neuroanatomy and solve lesion localization cases during their neurology clerkship. In both cases, the CNS was highly rated as a teaching tool and 98% recommended it for future students. Notably, 90% of medical students surveyed suggested that the CNS prosection be introduced prior to clinical rotations. Anat Sci Educ 11: 185–195. © 2017 American Association of Anatomists.  相似文献   

3.
This study compared the efficacy of two cardiac anatomy teaching modalities, ultrasound imaging and cadaveric prosections, for learning cardiac gross anatomy. One hundred and eight first-year medical students participated. Two weeks prior to the teaching intervention, students completed a pretest to assess their prior knowledge and to ensure that groups were equally randomized. Students, divided into pre-existing teaching groups, were assigned to one of two conditions; "cadaver" or "ultrasound." Those in the cadaver group received teaching on the heart using prosections, whereas the ultrasound group received teaching using live ultrasound images of the heart. Immediately after teaching, students sat a post-test. Both teaching modalities increased students' test scores by similar amounts but no significant difference was found between the two conditions, suggesting that both prosections and ultrasound are equally effective methods for teaching gross anatomy of the heart. Our data support the inclusion of either cadaveric teaching or living anatomy using ultrasound within the undergraduate anatomy curriculum, and further work is needed to compare the additive effect of the two modalities.  相似文献   

4.
Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with performance in the gross anatomy course and (2) dissection of the CT‐scanned cadaver is positively associated with performance on this course. One hundred and seventy‐nine first‐year medical students enrolled in gross anatomy at Boston University School of Medicine were provided with CT scans of four cadavers, and students were given the opportunity to choose whether or not to use these images. The hypotheses were tested using logistic regression analysis adjusting for student demographic characteristics. Students who used the CT scans were more likely to score greater than 90% as an average practical examination score (odds ratio OR 3.6; 95% CI 1.4, 9.2), final course grade (OR 2.6; 95% CI 1.01, 6.8), and on spatial anatomy examination questions (OR 2.4; 95% CI 1.03, 5.6) than were students who did not use the CT scans. There were no differences in performance between students who dissected the scanned cadavers and those who dissected a different cadaver. These results demonstrate that the use of CT scans in medical gross anatomy is predictive of performance in the course and on questions requiring knowledge of anatomical spatial relationships, but it is not necessary to scan the actual cadaver dissected by each student. Anat Sci Educ 3: 56–63, 2010. © 2010 American Association of Anatomists.  相似文献   

5.
Due to the current trend of decreasing contact hours and less emphasis being given to the basic science courses in the pre-clinical years of medical education, it is essential that new approaches to teaching gross anatomy are investigated to ensure medical students are being adequately exposed to anatomical content. This study retrospectively analyzed practical examination data from four medical gross anatomy classes (N = 569) to ascertain which pedagogical approach, student participation in the dissection process, or interaction with prosected specimens is best for teaching the anatomy of the hand and foot. Data analysis involved the use of propensity score matching, a nonparametric preprocessing statistical approach which ensures accurate representation of the true treatment effect by balancing cohorts prior to statistical analysis. Statistical analysis indicated that those students who were exposed to the anatomy of the hand through interactions with prosected specimens performed 5.6% better (P = 0.012) while for the foot, students who interacted with prosections performed 13.0% better (P < 0.001). Although limited, data from this study suggest that utilizing prosections of the hand and foot seems to be a more advantageous pedagogical approach for teaching these regions than requiring students to dissect them.  相似文献   

6.
It has been noted by staff at the Faculty of Health Sciences, Stellenbosch University that medical students neglect the study of surface anatomy during dissection. This study reports on the novel use of Lodox® Statscan® images in anatomical education, particularly the teaching of surface anatomy. Full body digital X‐ray images (Lodox Statscan) of each cadaver (n = 40) were provided to second year medical students. During dissection students were asked to visualize landmarks, organs, and structures on the digital X‐ray and their cadaver, as well as palpate these landmarks and structures on themselves, their colleagues, and the cadaver. To stimulate student engagement with surface anatomy, dissection groups were required to draw both the normal and actual position of organs on a laminated image provided. The accuracy of the drawings was subsequently assessed and students were further assessed by means of practical identification tests. In addition, students were asked to complete an anonymous questionnaire. A response rate of 79% was obtained for the student questionnaire. From the questionnaire it was gathered that students found the digital X‐ray images beneficial for viewing most systems' organs, except for the pelvic organs. Although it appears that students still struggle with the study of surface anatomy, most students believed that the digital X‐rays were beneficial to their studies and supported their continued use in the future. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

7.
After repeated requests from medical students for more cadaver dissection opportunities, a voluntary dissecting "competition" was initiated for the third year medical students in 2006. This has been held annually on five occasions since, offering up to 30 dissection stations and accommodating an average of 53 students (range 40-66) per year, representing about 20-25% of the total class. Material is standardized to distal upper or lower limb specimens, each of which is dissected by one or two students during a single weekend day. Participants are required to complete their dissection in about six hours and present an appropriately labeled display together with a 300 word abstract, emphasizing clinical relevance. Dissections are judged on presentation, accuracy of identification and labeling, and relevance to the clinical abstract, taking into account the technical difficulty of the particular dissection. Judging from successive annual uptake of places and informal feedback, this is not only a popular event allowing students to focus creatively on producing a clinically relevant dissection in a relaxed learning environment but also of educational value. An unexpected outcome has been the production of many specimens suitable as prosections for future classes. A dissecting competition may be a useful method of stimulating learning for medical students interested in undertaking further dissection but it requires appropriate staff commitment and a supply of suitable cadaver specimens.  相似文献   

8.
Progressive curricular changes in medical education over the past two decades have resulted in the diaspora of gross anatomy content into integrated curricula while significantly reducing total contact hours. Despite the development of a wide range of alternative teaching modalities, gross dissection remains a critical component of medical education. The challenge posed to modern anatomists is how to maximize and integrate the time spent dissecting under the current curricular changes. In this study, an alternative approach to the dissection of the pelvis and perineum is presented in an effort to improve content delivery and student satisfaction. The approach involves removal of the perineum en bloc from the cadaver followed by excision of the pubic symphysis, removal and examination of the bladder and associated structures, examination and bisection of the midline pelvic organs in situ, and midsagittal hemisection of the pelvis for identification of the neurovasculature. Results indicate that this novel dissecting approach increases the number of structures identified by 46% ± 14% over current dissecting methods. Survey results indicate that students were better able to integrate lecture and laboratory concepts, understand the concepts, and successfully identify more structures using the new approach (P < 0.05). The concept of anatomic efficiency is introduced and proposed as a standard quantitative measure of gross dissection proficiency across programs and institutions. These findings provide evidence that innovative solutions to anatomy education can be found that help to maintain critical content and student satisfaction in a modern medical curriculum.  相似文献   

9.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

10.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

11.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

12.
Many institutions rely upon prosection-based laboratories as more resource-efficient and time-effective alternatives to traditional cadaver dissection for human anatomy education. To facilitate growing enrollment numbers despite resource limitations, the University of Guelph (a non-medical institution) introduced a modified “stepwise” prosection-based laboratory cohort to supplement a dissection-based course. In this design, all students attended the same lectures, but those in the dissection-based cohort learned by performing regional dissections and students in the prosection-based cohort studied from those dissections. Prosection students thereby witnessed a “slow reveal” of structures throughout the course. This study compared the perceived course experiences, student approaches to learning, and academic performance between the two groups. Multiple linear regression analyses were used to isolate the effect of the laboratory environment on student approaches to learning and academic performance from demographic and situational covariates. Both groups reported positive course experience ratings and high average final grades that were not statistically dissimilar (P > 0.05), increased reliance on deep approaches to learning (P = 0.002), and decreased reliance on surface approaches to learning (P = 0.023). When controlling for covariates, participation in dissection had small but statistically significant positive associations with deep approaches to learning (P = 0.043), performance on laboratory oral assessments (P < 0.001), and average final grades (P = 0.039). Ultimately, both designs promoted meaningful learning and desirable performance outcomes, indicating that both dissection and stepwise prosection have the potential to facilitate high quality human anatomy instruction.  相似文献   

13.
The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection‐based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin‐containing embalming fluids. This report details how additive manufacturing or three‐dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. Anat Sci Educ 7: 479–486. © 2014 American Association of Anatomists.  相似文献   

14.
Most anatomists agree that cadaver dissection serves as a superior teaching tool in human anatomy education. However, attitudes toward body donation vary widely between different individuals. A questionnaire was developed to determine the attitudes toward body and organ donation among those who learn the most from cadavers: medical students, medical student teaching assistants, medical students involved in research, and anatomy professors. A cross‐sectional, prospective study was designed in which the questionnaire was distributed among first‐year human anatomy students before undertaking cadaver dissection at the beginning of the semester, and then again after a commemoration service at the end of the course. The questionnaire items included demographic data, as well as questions designed to characterize participants' attitudes regarding body/organ donation from strangers, family members, and whether participants would consider such practices with their own bodies. Out of a total of 517 students enrolled in the Human Anatomy course in the Medical School at the Universidad Autónoma de Nuevo León, Mexico during January to June 2016, 95% responded to the first (491) and second (490) surveys. Participants' opinions on their own organ donation was similar before and after exposure to cadaver dissection, with between 87% and 81% in favor of such practices, and only 3% against it, in both surveys. Participants' willingness to donate their own bodies, as well as those of family members, increased, while reluctance regarding such practices decreased by half (P < 0.0001 and P < 0.05). Professors had the highest rates of positive opinions regarding their own body donation (74.9%), with 18.8% undecided. Low opposition toward organ and body donation remains prevalent among both anatomists and physicians in training in Mexico. Anat Sci Educ 10: 589–597. © 2017 American Association of Anatomists.  相似文献   

15.
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

16.
17.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

18.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

19.
Human anatomy education often utilizes the essential practices of cadaver dissection and examination of prosected specimens. However, these exposures to human cadavers and confronting death can be stressful and anxiety‐inducing for students. This study aims to understand the attitudes, reactions, fears, and states of anxiety that speech therapy students experience in the dissection room. To that end, a before‐and‐after cross‐sectional analysis was conducted with speech therapy students undertaking a dissection course for the first time. An anonymous questionnaire was administered before and after the exercise to understand students' feelings and emotions. State‐Trait Anxiety Inventory questionnaires (STAI‐S and STAI‐T) were used to evaluate anxiety levels. The results of the study revealed that baseline anxiety levels measured using the STAI‐T remained stable and unchanged during the dissection room experience (P > 0.05). Levels of emotional anxiety measured using the STAI‐S decreased, from 15.3 to 11.1 points (P < 0.05). In the initial phase of the study, before any contact with the dissection room environment, 17% of students experienced anxiety, and this rate remained unchanged by end of the session (P > 0.05). A total of 63.4% of students described having thoughts about life and death. After the session, 100% of students recommended the dissection exercise, giving it a mean score of 9.1/10 points. Anatomy is an important subject for students in the health sciences, and dissection and prosection exercises frequently involve a series of uncomfortable and stressful experiences. Experiences in the dissection room may challenge some students' emotional equilibria. However, students consider the exercise to be very useful in their education and recommend it. Anat Sci Educ 10: 487–494. © 2017 American Association of Anatomists.  相似文献   

20.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号