首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social Media has changed the way that individuals interact with each other - it has brought considerable benefits, yet also some challenges. Social media in anatomy has enabled anatomists all over the world to engage, interact and form new collaborations that otherwise would not have been possible. In a relatively small discipline where individuals may be working as the only anatomist in an institution, having such a virtual community can be important. Social media is also being used as a means for anatomists to communicate with the current generation of students as well as members of the public. Posting appropriate content is one of the challenges raised by social media use in anatomy. Human cadaveric material is frequently shared on social media and there is divided opinion among anatomists on whether or not such content is appropriate. This article explores the uses and challenges of social media use in the field of anatomy and outlines guidelines on how social media can be used by anatomists globally, while maintaining professional and ethical standards. Creating global guidelines has shown to be difficult due to the differences in international law for the use of human tissue and also the irregularities in acquiring informed consent for capturing and sharing cadaveric images. These nuances may explain why cadaveric images are frequently shared on social media. This article proposes that as standard practice, anatomists obtain informed consent from donors before sharing images of cadaveric material on social media and ensure posts include a statement stating the same.  相似文献   

2.
As medical programs place increasing importance on competency-based training and surgical simulations for residents, anatomy laboratories, and body donation programs find themselves in a position of adapting to changing demands. To better assess the demand for “life-like” cadaveric specimens and evaluate the possible impacts that competency-based medical education could have upon the body donation program of McGill University, Canada, the authors tracked, over the course of the last 10 years, the number of soft-embalmed specimens, along with the number of teaching sessions and the residents enrolled in competency-based programs that are using cadaveric material. The results reveal that the number of soft-embalmed specimens used within residency training increased from 5 in 2009 to 35 in 2019, representing an increase from 6% of bodies to 36.5% of the total number of body donors embalmed in this institution. Correspondingly, the number of annual teaching sessions for residents increased from 19 in 2012 to 116 in 2019. These increases in teaching are correlated with increasing number of residents enrolled in competency-based programs over the last 3 years (Pearson r ranging from 0.9705 to 0.9903, and R2 ranging from 0.9418 to 0.9808). Those results suggest that the new skill-centered curricula which require residents to perform specific tasks within realistic settings, exhibit a growing demand for “life-like” cadaveric specimens. Institutions’ body donation programs must, therefore, adapt to those greater need for cadaveric specimens, which presents many challenges, ranging from the logistical to the ethical.  相似文献   

3.
As human cadavers are widely used in basic sciences, medical education, and other training and research venues, there is a real need for experts trained in anatomy and dissection. This article describes a program that gives individuals interested in clinical and basic sciences practical experience working with cadavers. Participants are selected through an open application process and attend sessions focused on anatomical terminology, gross anatomy and radiography, and some of the educational applications of human cadavers. Dissection skills are honed during an intensive, two‐day cadaver dissection and orthopedic workshop. Participants communicate the knowledge they gain through table‐side discussions, reflect upon the experience during a memorial service, and submit written program evaluations. Additionally, the dissection and preparation of cadaveric materials accomplished in this course are used in the medical school gross anatomy course during the next academic year. From 2004 through 2008, the annual number of applicants increased from 40 to 167, and the number of participants increased from 25 to 43 per year. Program participants have represented diverse ethnic, educational, and professional backgrounds. Feedback from participants has been remarkably positive, including comments on the large amount of learning that takes place during the sessions, the positive impact the program has had on career choice, and the desire for program expansion. This program, which could be replicated at other institutions, teaches anatomy, prepares cadaveric prosections for teaching and training others, and encourages participants to pursue careers in anatomical and biomedical sciences. Anat Sci Educ 3: 77–82, 2010. © 2010 American Association of Anatomists.  相似文献   

4.
For centuries cadaveric dissection has been a cornerstone of medical anatomy education. However, time and financial limitations in modern, compressed medical curricula, coupled with the abundance of alternate modalities, have raised questions about the role of dissection. This study was designed to explore student perceptions of the efficacy of a dissection program for learning musculoskeletal anatomy, and possible adaptations for appropriate inclusion of dissection in the modern medical curricula. A paper-based questionnaire was used to collect data from 174 medical students after completion of cadaveric dissections. Data were analyzed using both quantitative and qualitative methods. Students strongly believed that cadaver-based learning is essential to anatomy education and modern teaching modalities only complement this. Moreover, most students reported that dissection provided an additional, immersive learning experience that facilitated active learning and helped in developing manual competencies. Students with previous dissection experience or an interest in anatomy-related specialties were significantly more likely to attend dissection sessions. Students found that the procedural dissection components enhanced the knowledge of applied anatomy and is beneficial for the development of clinical skills. They welcomed the idea of implementing more procedure-based dissections alongside lectures and prosections-based practical (PBP) sessions. Cadaveric dissection plays an integral role in medical anatomy education. Time restraints and an increased focus on clinical significance, however, demand carefully considered adaptations of existing dissection protocols. The introduction of procedure-based dissection offers an innovative, highly engaging and clinically relevant package that would amalgamate skills essential to medical practice while retaining the benefits that have allowed dissection to stand the test of time.  相似文献   

5.
Growing evidence supports the use of reflective writing activities centered around the human cadaveric dissection experience to support and assess elements of medical student wellness. Dissection may promote personal and professional development, increase resilience, and foster a sense of connection and community. This study employed a qualitative analysis of a reflective writing exercise to explore the question: “What is the impact of the cadaveric dissection anatomy experience on the personal and professional development of medical students?” This cross-sectional study was conducted at the conclusion of the first-year anatomy module. A total of 117 United States allopathic medical students were given a questionnaire designed to elicit the students' experiences and introspection. The exercise included four reflective questions that were provided to 20 groups of six students. Grounded theory analysis was used to explore themes that arose in students' responses. Participants exhibited several common reactions to cadaveric dissection. After analyzing all responses, 266 unique open codes were identified for all four questions. These open codes were sorted into ten distinct axial codes, which are broader categorical themes of open codes. The aims of our study were to identify themes that emerged as students reflected on the impact of their dissection experience using reflective writing as a tool to capture these themes and to gather information to inform pedagogical methodologies. The researchers observed that the educational effects of dissection captured in the reflective writing resembled those found in other areas of medical education that emphasize professional identity formation and important humanistic qualities.  相似文献   

6.
It is universally recognized that cadaveric dissection is an essential part of anatomy training. However, it has been reported to induce mental distress in some students and impair their intrinsic motivation (IM) to study. One of the postulated reasons for this behavior is the lack of adequate information and preparation of students for cadaveric dissection. Therefore, it is hypothesized that providing relevant information prior to cadaveric dissection will ameliorate the mental distress, enhance the IM of students, and improve their academic performance. A cohort of occupational therapy students enrolled in an anatomy course were psychologically prepared for cadaveric dissection. Students were provided with a curated list of YouTube videos and peer-reviewed journal articles related to cadaveric dissection prior to the commencement of the anatomy course. All students were also required to attend an oral presentation immediately before commencing dissection. The control group included students who had not been provided with any resources in preparation for cadaveric dissection. Compared to the control group, students who had been prepared demonstrated better quality of cadaveric dissection, improved academic performance, reported less mental distress and greater IM. Moreover, students reported the oral presentation to be most relevant and journal articles to be least useful in their preparation. Therefore, this is an effective approach in the amelioration of mental distress and improvement of performance in anatomy students. Consequently, this study represents a paradigm shift in the pedagogy of anatomy, and could represent a vital element in the evolution of a revitalized anatomy curriculum.  相似文献   

7.
The debate surrounding the use of cadavers in teaching anatomy has focused almost exclusively on the pedagogic role of cadaver dissection in medical education. The aim of this study was to explore the wider aspects of a body bequest program for teaching and research into gross anatomy in a University setting. A retrospective audit was undertaken on body donation and the use of cadaver specimens for teaching and research at our institution between 1876 and 2009. The body bequest program, first established in 1943, now receives more than 40 donations per year. In addition to the medical course, nine other University degrees and courses currently use cadaver specimens for gross anatomy; four of these are research degrees and the remainder undergraduate degrees and courses. The use of cadaver specimens by non‐University groups has also increased, particularly during the past decade, such that there are now 16 different groups using cadaver specimens for instructional courses; most of these are professional medical courses. The use of cadavers for both research and teaching may encourage a more evidence‐based approach to clinical anatomy. This unique audit, spanning more than a century of anatomy education within a single University Medical School, highlights the utility of a robust body bequest program and the wide range of students and health professionals who interact with this precious resource. Anat Sci Educ 2:234–237, 2009 © 2009 American Association of Anatomists.  相似文献   

8.
Medical students at Durham University, United Kingdom receive instructions using ultrasound echocardiography . In this issue of ASE Dr. Finn and her colleagues compare the efficacy of ultrasound and cadaveric prosections for teaching gross anatomy of the heart.  相似文献   

9.
This study compared the efficacy of two cardiac anatomy teaching modalities, ultrasound imaging and cadaveric prosections, for learning cardiac gross anatomy. One hundred and eight first-year medical students participated. Two weeks prior to the teaching intervention, students completed a pretest to assess their prior knowledge and to ensure that groups were equally randomized. Students, divided into pre-existing teaching groups, were assigned to one of two conditions; "cadaver" or "ultrasound." Those in the cadaver group received teaching on the heart using prosections, whereas the ultrasound group received teaching using live ultrasound images of the heart. Immediately after teaching, students sat a post-test. Both teaching modalities increased students' test scores by similar amounts but no significant difference was found between the two conditions, suggesting that both prosections and ultrasound are equally effective methods for teaching gross anatomy of the heart. Our data support the inclusion of either cadaveric teaching or living anatomy using ultrasound within the undergraduate anatomy curriculum, and further work is needed to compare the additive effect of the two modalities.  相似文献   

10.
Described in this article is a novel device that facilitates study of the cross‐sectional anatomy of the human head. In designing our device, we aimed to protect sections of the head from the destructive action of handling during anatomy laboratory while also ensuring excellent visualization of the anatomic structures. We used an electric saw to create 15‐mm sections of three cadaver heads in the three traditional anatomic planes and inserted each section into a thin, perforated display box made of transparent acrylic material. The thin display boxes with head sections are kept in anatomical order in a larger transparent acrylic storage box containing formaldehyde solution, which preserves the specimens but also permits direct observation of the structures and their anatomic relationships to each other. This box‐within‐box design allows students to easily view sections of a head in its anatomical position as well as to examine internal structures by manipulating individual display boxes without altering the integrity of the preparations. This methodology for demonstrating cross‐section anatomy allows efficient use of cadaveric material and technician time while also giving learners the best possible handling and visualization of complex anatomic structures. Our approach to teaching cross‐sectional anatomy of the head can be applied to any part of human body, and the value of our device design will only increase as more complicated understandings of cross‐sectional anatomy are required by advances and proliferation of imaging technology. Anat Sci Educ 2010. © 2010 American Association of Anatomists.  相似文献   

11.
The anatomy curriculum at Namibia's first, and currently only, medical school is clinically oriented, outcome-based, and includes all of the components of modern anatomical sciences i.e., histology, embryology, neuroanatomy, gross, and clinical anatomy. The design of the facilities and the equipment incorporated into these facilities were directed toward simplification of work flow and ease of use by faculty, staff, and students. From the onset, the integration of state of the art technology was pursued to facilitate teaching and promote a student-centered pedagogical approach to dissections. The program, as realized, is comprised of three 16-week semesters with seven hours of contact time per week, namely three hours of lectures and four hours of dissection laboratory and microscopy time. Set outcomes were established, each revolving around clinical cases with integrated medical imaging. The design of the facility itself was not constrained by a legacy structure, allowing the School of Medicine, in collaboration with architects and contractors, to design the building from scratch. A design was implemented that allows for the sequential processing of cadaveric material in a unidirectional flow from reception, to preparation, embalming, storage, dissection, and maceration. Importantly, the odor of formaldehyde typically associated with anatomy facilities was eliminated outside of the dissection areas and minimized within via a high-performance ventilation system. By holistically incorporating an integrated curriculum, facility design, and teaching at an early stage, the authors believe they have created a system that might serve as a model for new anatomy programs.  相似文献   

12.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

13.
The Covid-19 pandemic has driven the fastest changes to higher education across the globe, necessitated by social distancing measures preventing face-to-face teaching. This has led to an almost immediate switch to distance learning by higher education institutions. Anatomy faces some unique challenges. Intrinsically, anatomy is a three-dimensional subject that requires a sound understanding of the relationships between structures, often achieved by the study of human cadaveric material, models, and virtual resources. This study sought to identify the approaches taken in the United Kingdom and Republic of Ireland to deliver anatomical education through online means. Data were collected from 14 different universities in the United Kingdom and Republic of Ireland and compared adopting a thematic analysis approach. Once themes were generated, they were collectively brought together using a strength, weakness, opportunity, threat (SWOT) analysis. Key themes included the opportunity to develop new online resources and the chance to engage in new academic collaborations. Academics frequently mentioned the challenge that time constrains could place on the quality and effectiveness of these resources; especially as in many cases the aim of these resources was to compensate for a lack of exposure to cadaveric exposure. Comparisons of the actions taken by multiple higher education institutions reveal the ways that academics have tried to balance this demand. Discussions will facilitate decisions being made by higher education institutions regarding adapting the curriculum and assessment methods in anatomy.  相似文献   

14.
This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T‐tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were significantly increased compared with the previous year. We hypothesize that this is due to students' ability to use and understand the technology quickly as opposed to learning how to maneuver an optical microscope. Students also responded positively in a survey about the virtual microscope, indicating that increased accessibility, ease of use, and the ability to understand the material were important components of the virtual microscope. In addition, an increase in student collaboration was noted because multiple students were able to view the image at a time. This level of acceptance of virtual microscopy has been reported in previous studies, though this level of increased examination scores is rare. We attribute this to differences between the medical students, with whom this technology has been researched in the past, and undergraduate introductory students. Anat Sci Educ 2:218–226, 2009. © 2009 American Association of Anatomists.  相似文献   

15.
Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with performance in the gross anatomy course and (2) dissection of the CT‐scanned cadaver is positively associated with performance on this course. One hundred and seventy‐nine first‐year medical students enrolled in gross anatomy at Boston University School of Medicine were provided with CT scans of four cadavers, and students were given the opportunity to choose whether or not to use these images. The hypotheses were tested using logistic regression analysis adjusting for student demographic characteristics. Students who used the CT scans were more likely to score greater than 90% as an average practical examination score (odds ratio OR 3.6; 95% CI 1.4, 9.2), final course grade (OR 2.6; 95% CI 1.01, 6.8), and on spatial anatomy examination questions (OR 2.4; 95% CI 1.03, 5.6) than were students who did not use the CT scans. There were no differences in performance between students who dissected the scanned cadavers and those who dissected a different cadaver. These results demonstrate that the use of CT scans in medical gross anatomy is predictive of performance in the course and on questions requiring knowledge of anatomical spatial relationships, but it is not necessary to scan the actual cadaver dissected by each student. Anat Sci Educ 3: 56–63, 2010. © 2010 American Association of Anatomists.  相似文献   

16.
In most medical schools, summative practical examination in Anatomy usually takes the format of a “steeplechase” (“spotters” or “bell ringers”) conducted in the gross anatomy laboratory using cadaveric material and prosected specimens. Recently, we have started to administer similar examinations online using the quiz facility in WebCT? and Moodle?. This article chronicles how we conceived and developed this method within the peculiar nature of our medical school setting. Over a five year period, practical summative examinations were organized as “steeplechase” online. The online examinations were administered using WebCT? and later Moodle? learning management software. Assessment “objects” were created from the materials available for anatomy teaching. These were digital images of cadaveric materials, radiological, and prosected specimens. In addition, short video clips of 30 seconds duration demonstrating muscle action were produced. These objects were optimized for online viewing and then uploaded onto the learning management software. A bank of questions (multiple choice or short answer type) was then created and linked to the assessment objects. These were used in place of the steeplechase in the computer laboratory. This method serves a crucial purpose in places like ours where continuous availability of human cadavers is impossible. Although time consuming initially, once questions are setup online, future retrieval, and administration becomes convenient especially where there are large batches of students. In addition, the online environment offers distinct advantages with regards to image quality, psychometric analysis of the examination and reduction of staff preparation time compared to traditional “steeplechase.” Anat Sci Educ 4: 115–118, 2011. © 2010 American Association of Anatomists.  相似文献   

17.
18.
Allied health professionals concur that a sound knowledge of practical gross anatomy is vital for the clinician, however, human anatomy courses in allied health programs have been identified as high‐risk for attrition and failure. While anatomists and clinicians agree that learning anatomy via human cadaveric instruction is the preferred method, students vary in their reaction to the cadaveric learning experience and have differing levels of anatomy self‐efficacy. This study investigated whether student self‐efficacy had an effect on student usage of supplemental instructional videos and whether the use of videos had an impact on student self‐efficacy and/or learning. Anatomy self‐efficacy differed based on gender and prior performance. Student usage of the videos varied widely and students with lower self‐efficacy were more inclined to use the resources. The provision of the videos did not improve overall cohort performance as compared to a historical cohort, however, those students that accessed all video sets experienced a greater normalized learning gain compared to students that used none or one of the four sets of videos. Student reports and usage patterns indicate that the videos were primarily used for practical class preparation and revision. Potentially, the videos represent a passive mode of teaching whereas active learning has been demonstrated to result in greater learning gains. Adapting the videos into interactive tutorials which will provide opportunity for feedback and the development of students' self‐evaluation may be more appropriate. Anat Sci Educ 11: 461–470. © 2017 American Association of Anatomists.  相似文献   

19.
Increasing number of medical students and limited availability of cadavers have led to a reduction in anatomy teaching through human cadaveric dissection. These changes triggered the emergence of innovative teaching and learning strategies in order to maximize students learning of anatomy. An alternative approach to traditional dissection was presented in an effort to improve content delivery and student satisfaction. The objective of this study is to acquire three-dimensional (3D) anatomical data using structured-light surface scanning to create a dynamic four-dimensional (4D) dissection tool of four regions: neck, male inguinal and femoral areas, female perineum, and brachial plexus. At each dissection step, identified anatomical structures were scanned using a 3D surface scanner (Artec Spider™). Resulting 3D color meshes were overlaid to create a 4D (3D+time) environment. An educational interface was created for neck dissection. Its implementation in the visualization platform allowed 4D virtual dissection by navigating from surface to deep layers and vice versa. A group of 28 second-year medical students and 17 first-year surgery residents completed a satisfaction survey. A majority of medical students (96.4%) and 100% of surgery residents said that they would recommend this tool to their colleagues. According to surgery residents, the main elements of this virtual tool were the realistic high-quality of 3D acquisitions and possibility to focus on each anatomical structure. As for medical students, major elements were the interactivity and entertainment aspect, precision, and accuracy of anatomical structures. This approach proves that innovative solutions to anatomy education can be found to help to maintain critical content and student satisfaction in anatomy curriculum.  相似文献   

20.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号