首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

We analysed the time course of recovery of creatine kinase (CK) and countermovement jump (CMJ) parameters after a football match, and correlations between changes in these variables and match time–motion parameters (GPS-accelerometry) in 15 U-19 elite male players. Plasma CK and CMJ height (CMJH), average concentric force (CMJCON) and average eccentric force (CMJECC) were assessed 2 h before and 30 min, 24 h and 48 h post-match. There were substantially higher CK levels 30 min, 24 h and 48 h (ES: 0.43, 0.62, 0.40, respectively), post-match. CMJECC (ES: ?0.38), CMJH (ES: ?0.35) decreased 30 min post, CMJCON (ES: ?0.35), CMJECC (ES: ?0.35) and CMJH (ES: ?1.35) decreased 24 h post, and CMJCON (ES: ?0.41) and CMJH (ES: ?0.53) decreased 48 h post. We found correlations between distance covered at velocities ≤21 km · h?1 and changes in CK at 24 h (r = 0.56) and at 48 h (r = 0.54) and correlations between CK and distance covered >14 km · h?1 (r = 0.50), accelerations (r = 0.48), and decelerations (r = 0.58) at 48 h. Changes in CMJCON 30 min and 24 h post (both r = ?0.68) correlated with impacts >7.1·G. Decelerations >2 m · s?2 correlated with changes CMJCON (r = ?0.49) at 48 h and CMJECC (r = ?0.47) at 30 min. Our results suggest that match GPS-accelerometry parameters may predict muscle damage and changes in components of neuromuscular performance immediately and 24–48 h post-match.  相似文献   

2.
Kinetics and full body kinematics were measured in ten elite goalkeepers diving to save high and low balls at both sides of the goal, aiming to investigate their starting position, linear and angular momentum, and legs' contribution to end-performance. Our results showed that goalkeepers adopted a starting position with a stance width of 33 ± 1% of leg length, knee flexion angle of 62 ± 18° and hip flexion angle of 63 ± 18°. The contralateral leg contributed more than the ipsilateral leg to COM velocity (p < 0.01), both for the horizontal (2.7 ± 0.1 m·s?1 versus 1.2 ± 0.1 m·s?1) and for the vertical component (3.1 ± 0.3 m·s?1 versus 0.4 ± 0.2 m·s?1). Peak horizontal and peak angular momenta were significantly larger (p < 0.01) for low dives than for high dives with a mean difference of 55 kg·m·s?1 and 9 kg·m2·s?1, respectively. In addition, peak vertical momentum was significantly larger (p < 0.01) for high dives with a mean difference between dive heights of 113 kg·m·s?1. Coaches need to highlight horizontal lateral skills and exercises (e.g. sideward push-off, sideward jumps), with emphasis on pushing-off with the contralateral leg, when training and assessing goalkeeper’s physical performance.  相似文献   

3.
Abstract

This study investigated the influence of dehydration during soccer-type intermittent exercise on isokinetic and isometric muscle function. Eight soccer players performed two 90-min high-intensity intermittent shuttle-running trials without (NF) or with (FL) fluid ingestion (5 ml · kg?1 before and 2 ml · kg?1 every 15 min). Isokinetic and isometric strength and muscular power of knee flexors and knee extensors were measured pre-exercise, at half-time and post-exercise using isokinetic dynamometry. Sprint performance was monitored throughout the simulated-soccer exercise. Isokinetic knee strength was reduced at faster (3.13 rad · s?1; P = 0.009) but not slower (1.05 rad · s?1; P = 0.063) contraction speeds with exercise; however, there was no difference between FL and NF. Peak isometric strength of the knee extensors (P = 0.002) but not the knee flexors (P = 0.065) was significantly reduced with exercise with no difference between FL and NF. Average muscular power was reduced over time at both 1.05 rad · s?1 (P = 0.01) and 3.14 rad · s?1 (P = 0.033) but was not different between FL and NF. Mean 15-m sprint time increased with duration of exercise (P = 0.005) but was not different between FL and NF. In summary, fluid ingestion during 90 min of soccer-type exercise was unable to offset the reduction in isokinetic and isometric strength and muscular power of the knee extensors and flexors.  相似文献   

4.
Abstract

Eighteen male subjects, ages 20–28 years, engaged in three fatigue bouts using an isokinetic dynamometer (Cybex II). Maximum knee extension contractions were given for 100 s at a rate of 30 per minute. The three contraction speeds chosen were 120° · s –1 160° · s –1 and 200° · s –1.Peak torque at 120° · s –1 was significantly greater (p <.05) than at 200° · s –1 for the first 60 s, and 160° · s –1 for the first 50 s. Thereafter, no significant differences existed among conditions. All three curves were found to follow two-component exponential functions as shown by the equation yt =a 2 ek2t – a 1 ek1t + c. The three curves possessed similar rate constants for both components. Time to peak torque was achieved at similar times for testing at 160 and 200° · s –1 (p <.05). It is concluded that peak torque varies inversely with movement speed, and that the pattern of decrement is independent of movement speed. Time to peak torque does not appear to change significantly across trials in isokinetic fatigue.  相似文献   

5.
Abstract

Determination of the strongest possible relationship between isokinetic quadriceps and functional performance measurements in healthy females would allow sports medicine practitioners to establish normative values when examining muscular performance in injured females. Previous attempts to correlate both measurements have, however, produced inconsistent results. The purpose of this study was to examine the effects of allometric scaling, isokinetic testing velocities, reciprocal and non-reciprocal isokinetic testing on the relationship between countermovement jump (CMJ) and isokinetic quadriceps torque and power in recreational females athletes. Seventeen females (age 21.0 ± 2.0 years, body mass index 19.5 ± 1.0 kg · m?2) performed isokinetic quadriceps and CMJ tests. Isokinetic peak torque and average power were obtained reciprocally and non-reciprocally at 1.05 and 3.14 rad · s?1, and were corrected for body mass by allometric modelling. Pearson product–moment correlation (r) was used to assess the relationship between the isokinetic parameters and the CMJ measurements. Coefficients of determination (r 2) were calculated to determine the magnitude of common variance. The r-values for all non-allometrically modelled non-reciprocal parameters were greater (r = 0.58–0.63) than isokinetic parameters obtained reciprocally (r = 0.28–0.47). Using allometric scaling, non-reciprocal isokinetic data accounted for an additional 2–9% of the CMJ height variance, and statistically significant correlations were obtained at both 1.05 and 3.14 rad · s?1. Allometrically scaled, non-reciprocal isokinetic peak torque and average power at 1.05 rad · s?1 had the highest correlation with CMJ (r 2 = 0.49). At both 1.05 and 3.14 rad · s?1, non-reciprocal quadriceps parameters correlated more closely with CMJ measurements than do reciprocal contractions. Normalization for body size by allometrically scaling may further improve correlations with CMJ performance.  相似文献   

6.
This study aimed to provide a comprehensive strength-based physiological profile of women’s NCAA Division I basketball and gymnastic athletes; and to make sport-specific comparisons for various strength characteristics of the knee flexor and extensor muscles. A focus on antagonist muscle balance (hamstrings-to-quadriceps ratios, H:Q) was used to elucidate vulnerabilities in these at-risk female athletes. Fourteen NCAA Division I women’s basketball and 13 gymnastics athletes performed strength testing of the knee extensors and flexors. Outcome measures included absolute and relative (body mass normalised) peak torque (PT), rate of torque development at 50, 100, 200 ms (RTD50 etc.) and H:Q ratios of all variables. The basketball athletes had greater absolute strength for all variables except for isokinetic PT at 240°s?1 and isometric RTD50 for the knee extensors. Gymnasts showed ~20% weaker body mass relative concentric PT for the knee flexors at 60 and 120°·s?1, and decreased conventional H:Q ratios at 60 and 240°·s?1 (~15%). These findings suggest that collegiate level gymnastics athletes may be prone to increased ACL injury risk due to deficient knee flexor strength and H:Q strength imbalance. Coaches may use these findings when implementing injury prevention screening and/or for individualised strength training programming centered around an athletes strength-related deficits.  相似文献   

7.
We investigated combined effects of ambient temperature (23°C or 13°C) and fraction of inspired oxygen (21%O2 or 13%O2) on energy cost of walking (Cw: J·kg?1·km?1) and economical speed (ES). Eighteen healthy young adults (11 males, seven females) walked at seven speeds from 0.67 to 1.67 m s?1 (four min per stage). Environmental conditions were set; thermoneutral (N: 23°C) with normoxia (N: 21%O2) = NN; 23°C (N) with hypoxia (H: 13%O2) = NH; cool (C: 13°C) with 21%O2 (N) = CN, and 13°C (C) with 13%O2 (H) = CH. Muscle deoxygenation (HHb) and tissue O2 saturation (StO2) were measured at tibialis anterior. We found a significantly slower ES in NH (1.289 ± 0.091 m s?1) and CH (1.275 ± 0.099 m s?1) than in NN (1.334 ± 0.112 m s?1) and CN (1.332 ± 0.104 m s?1). Changes in HHb and StO2 were related to the ES. These results suggested that the combined effects (exposure to hypoxia and cool) is nearly equal to exposure to hypoxia and cool individually. Specifically, acute moderate hypoxia slowed the ES by approx. 4%, but acute cool environment did not affect the ES. Further, HHb and StO2 may partly account for an individual ES.  相似文献   

8.
Abstract

The aims of this study were to examine the acute effects of static stretching on peak torque, work, the joint angle at peak torque, acceleration time, isokinetic range of motion, mechanomyographic amplitude, and electromyographic amplitude of the rectus femoris during maximal concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1 in men and women. Ten women (mean ± s: age 23.0 ± 2.9 years, stature 1.61 ± 0.12 m, mass 63.3 ± 9.9 kg) and eight men (age 21.4 ± 3.0 years, stature 1.83 ± 0.11 m, mass 83.1 ± 15.2 kg) performed maximal voluntary concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1. Following the initial isokinetic tests, the dominant leg extensors were stretched using four static stretching exercises. After the stretching, the isokinetic tests were repeated. Peak torque, acceleration time, and electromyographic amplitude decreased (P≤ 0.05) from pre- to post-stretching at 1.04 and 5.23 rad · s?1; there were no changes (P > 0.05) in work, joint angle at peak torque, isokinetic range of motion, or mechanomyographic amplitude. These findings indicate no stretching-related changes in the area under the angle – torque curve (work), but a significant decrease in peak torque, which suggests that static stretching may cause a “flattening” of the angle – torque curve that reduces peak strength but allows for greater force production at other joint angles. These findings, in conjunction with the increased limb acceleration rates (decreased acceleration time) observed in the present study, provide tentative support for the hypothesis that static stretching alters the angle – torque relationship and/or sarcomere shortening velocity.  相似文献   

9.
Abstract

In this study, we evaluated the effects of a novel pedal design, characterized by a downward and forward shift of the cleat fixing platform relative to the pedal axle, on maximal power output and mechanical efficiency in 22 well-trained cyclists. Maximal power output was measured during a series of short (5-s) intermittent sprints on an isokinetic cycle ergometer at cadences from 40 to 120 rev · min?1. Mechanical efficiency was evaluated during a submaximal incremental exercise test on a bicycle ergometer using continuous [Vdot]O2 and [Vdot]CO2 measurement. Similar tests with conventional pedals and the novel pedals, which were mounted on the individual racing bike of the participant, were randomized. Maximal power was greater with novel pedals than with conventional pedals (between 6.0%, sx  = 1.5 at 40 rev · min?1 and 1.8%, sx  = 0.7 at 120 rev · min?1; P = 0.01). Torque production between crank angles of 60° and 150° was higher with novel pedals than with conventional pedals (P = 0.004). The novel pedal design did not affect whole-body [Vdot]O2 or [Vdot]CO2. Mechanical efficiency was greater with novel pedals than with conventional pedals (27.2%, sx  = 0.9 and 25.1%, sx  = 0.9% respectively; P = 0.047; effect size = 0.9). In conclusion, the novel pedals can increase maximal power output and mechanical efficiency in well-trained cyclists.  相似文献   

10.
Abstract

Elite badminton requires muscular endurance combined with appropriate maximal and explosive muscle strength. The musculature of the lower extremities is especially important in this context since rapid and forceful movements with the weight of the body are performed repeatedly throughout a match. In the present study, we examined various leg-strength parameters of 35 male elite badminton players who had been performing resistance exercises as part of their physical training for several years. The badminton players were compared with an age-matched reference group, the members of whom were physically active on a recreational basis, and to the same reference group after they had performed resistance training for 14 weeks. Maximal muscle strength of the knee extensor (quadriceps) and flexor muscles (hamstrings) was determined using isokinetic dynamometry. To measure explosive muscle strength, the contractile rate of force development was determined during maximal isometric muscle contractions. In general, the badminton players showed greater maximal muscle strength and contractile rate of force development than the reference group: mean quadriceps peak torque during slow concentric contraction: 3.69 Nm · kg?1, s=0.08 vs. 3.26 Nm · kg?1, s=0.8 (P<0.001); mean hamstring peak torque during slow concentric contraction: 1.86 Nm · kg?1, s=0.04 vs. 1.63 Nm · kg?1, s=0.04 (P<0.001); mean quadriceps rate of force development at 100 ms: 24.4 Nm · s?1·kg?1, s=0.5 vs. 22.1 Nm·s?1 · kg?1, s=0.6 (P<0.05); mean hamstring rate of force development at 100 ms: 11.4 Nm · s?1·kg?1, s=0.3 vs. 8.9 Nm · s?1 · kg?1, s=0.4 (P<0.05). However, after 14 weeks of resistance training the reference group achieved similar isometric and slow concentric muscle strength as the badminton players, although the badminton players still had a higher isometric rate of force development and muscle strength during fast (240° · s?1) quadriceps contractions. Large volumes of concurrent endurance training could have attenuated the long-term development of maximal muscle strength in the badminton players. The badminton players had a higher contractile rate of force development than the reference group before and after resistance training. Greater explosive muscle strength in the badminton players might be a physiological adaptation to their badminton training.  相似文献   

11.
Impact is an important aspect of the kicking skill. This study examined foot and ball motion during impact and compared distance and accuracy punt kicks. Two-dimensional high-speed video (4000 Hz) captured data of the shank, foot and ball through impact of 11 elite performers kicking for maximal distance and towards a target 20 m in distance. Four phases were identified during impact, with an overall reduction in foot velocity of 5.0 m · s?1 (± 1.1 m · s?1) and increase in ball velocity of 22.7 m · s?1 (± 2.3 m · s?1) from the start to end of contact. Higher foot velocity was found in distance compared to accuracy kicks (22.1 ± 1.6 m · s?1 vs. 17.7 ± 0.9 m · s?1, P < 0.05), and was considered to produce the significant differences in all impact characteristics excluding foot-to-ball speed ratio. Ankle motion differed between the kicking tasks; distance kicks were characterised by greater rigidity compared to accuracy kicks evident by larger force (834 ± 107 N vs. 588 ± 64 N) and smaller change in ankle angle (2.2 ± 3.3° vs. 7.2 ± 6.4°). Greater rigidity was obtained by altering the position of the ankle at impact start; distance kicks were characterised by greater plantarflexion (130.1 ± 5.8° vs. 123.0 ± 7.9°, P < 0.05), indicating rigidity maybe actively controlled for specific tasks.  相似文献   

12.
Abstract

We compared starters and non-starters for various isokinetic strength variables in elite women’s soccer players. A convenience sample of 10 starters (mean ± s; age = 20 ± 2 years; height = 170 ± 4 cm; body mass = 65 ± 5 kg) and 7 non-starters (age = 20 ± 1 years; height = 164 ± 3 cm; body mass = 63 ± 4 kg) performed maximal voluntary muscle actions of the leg extensors (concentric) and flexors (eccentric) on an isokinetic dynamometer in order to measure concentric peak torque for the leg extensors, eccentric peak torque for the leg flexors, and the functional hamstrings:quadriceps (H:Q) ratio at 1.047 rad · s-1 and 4.189 rad · s-1 concentric peak torque for the leg extensors was not different between starters and non-starters. However, it was greater at 1.047 rad · s-1 than at 4.189 rad · s-1 in both groups. Eccentric peak torque for the leg flexors was greater for the starters versus non-starters at 4.189 rad · s-1. Eccentric strength of the leg flexors at fast movement velocities may be used as an effective physiological profile and may discriminate between playing status in elite women’s soccer players.  相似文献   

13.
This investigation examined the effect of beetroot juice (BR) supplementation, a source of dietary nitrate (NO3?), on cycling time-trial (TT) performance and thermoregulation in the heat. In a double-blind, repeated-measures design, 12 male cyclists (age 26.6 ± 4.4 years, VO2peak 65.8 ± 5.5 mL.kg?1.min?1) completed four cycling TTs (14 kJ.kg?1) in hot (35°C, 48% relative humidity) and euthermic (21°C, 52%) conditions, following 3 days supplementation with BR (6.5 mmol NO3? for 2 days and 13 mmol NO3? on the final day), or NO3depleted placebo (PLA). Salivary NO3? and nitrite, core (Tc) and mean skin temperature (Tsk) were measured. Salivary NO3? and nitrite increased significantly post-BR supplementation (< 0.001). Average TT completion time (mm:ss) in hot conditions was 56:50 ± 05:08 with BR, compared with 58:30 ± 04:48 with PLA (= 0.178). In euthermic conditions, average completion time was 53:09 ± 04:35 with BR, compared with 54:01 ± 04:05 with PLA (= 0.380). The TT performance decreased (< 0.001), and Tc (< 0.001) and Tsk (< 0.001) were higher in hot compared with euthermic conditions. In summary, BR supplementation has no significant effect on cycling TT performance in the heat.  相似文献   

14.
This study aimed to assess the effects of core stability training on lower limbs’ muscular asymmetries and imbalances in team sport. Twenty footballers were divided into two groups, either core stability or control group. Before each daily practice, core stability group (= 10) performed a core stability training programme, while control group (= 10) did a standard warm-up. The effects of the core stability training programme were assessed by performing isokinetic tests and single-leg countermovement jumps. Significant improvement was found for knee extensors peak torque at 3.14 rad · s?1 (14%; < 0.05), knee flexors peak torque at 1.05 and 3.14 rad · s?1 (19% and 22% with < 0.01 and < 0.01, respectively) and peak torque flexors/extensors ratios at 1.05 and 3.14 rad · s?1 (7.7% and 8.5% with < 0.05 and < 0.05, respectively) only in the core stability group. The jump tests showed a significant reduction in the strength asymmetries in core stability group (?71.4%; = 0.02) while a concurrent increase was seen in the control group (33.3%; < 0.05). This study provides practical evidence in combining core exercises for optimal lower limbs strength balance development in young soccer players.  相似文献   

15.
To assess the effect of carbohydrate and caffeine on gross efficiency (GE), 14 cyclists (V?O2max 57.6 ± 6.3 ml.kg?1.min?1) completed 4 × 2-hour tests at a submaximal exercise intensity (60% Maximal Minute Power). Using a randomized, counter-balanced crossover design, participants consumed a standardised diet in the 3-days preceding each test and subsequently ingested either caffeine (CAF), carbohydrate (CHO), caffeine+carbohydrate (CAF+CHO) or water (W) during exercise whilst GE and plasma glucose were assessed at regular intervals (~30 mins). GE progressively decreased in the W condition but, whilst caffeine had no effect, this was significantly attenuated in both trials that involved carbohydrate feedings (W = ?1.78 ± 0.31%; CHO = ?0.70 ± 0.25%, p = 0.008; CAF+CHO = ?0.63 ± 0.27%, p = 0.023; CAF = ?1.12 ± 0.24%, p = 0.077). Blood glucose levels were significantly higher in carbohydrate ingestion conditions (CHO = 4.79 ± 0.67 mmol·L?1, p < 0.001; CAF+CHO = 5.05 ± 0.81 mmol·L?1, p < 0.001; CAF = 4.46 ± 0.75 mmol·L?1; W = 4.20 ± 0.53 mmol·L?1). Carbohydrate ingestion has a small but significant effect on exercise-induced reductions in GE, indicating that cyclists’ feeding strategy should be carefully monitored prior to and during assessment.  相似文献   

16.
Abstract

We assessed the agreement between maximal oxygen consumption ([Vdot]O2max) measured directly when performing the 20-m shuttle run test and estimated [Vdot]O2max from five different equations (i.e. Barnett, equations a and b; Léger; Matsuzaka; and Ruiz) in youths. The 20-m shuttle run test was performed by 26 girls (mean age 14.6 years, s = 1.5; body mass 57.2 kg, s = 8.9; height 1.60 m, s = 0.06) and 22 boys (age 15.0 years, s = 1.6; body mass 63.5 kg, s = 11.5; height 1.70 m, s = 0.01). The participants wore a portable gas analyser (K4b2, Cosmed) to measure [Vdot]O2 during the test. All the equations significantly underestimated directly measured [Vdot]O2max, except Barnett's (b) equation. The mean difference ranged from 1.3 ml · kg?1 · min?1 (Barnett (b)) to 5.5 ml · kg?1 · min?1 (Léger). The standard error of the estimate ranged from 5.3 ml · kg?1 · min?1 (Ruiz) to 6.5 ml · kg?1 · min?1 (Léger), and the percentage error ranged from 21.2% (Ruiz) to 38.3% (Léger). The accuracy of the equations available to estimate [Vdot]O2max from the 20-m shuttle run test is questionable at the individual level. Furthermore, special attention should be paid when comparisons are made between studies (e.g. population-based studies) using different equations. The results of the present study suggest that Barnett's (b) equation provides the closest agreement with directly measured [Vdot]O2max (cardiorespiratory fitness) in youth.  相似文献   

17.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

18.
19.
Abstract

The purpose of this study was to determine the effects of a Nautilus circuit weight training program on muscular strength and maximal oxygen uptake ([Vdot]O 2 max) by comparing these effects to those produced by adhering to either a free weight (FW) strength training program or a running (R) program. Male college students who voluntarily enrolled in either a FW training class (n = 11), a Nautilus (N) circuit weight training class (n= 12), or a R conditioning class (n= 13) were subjects for this investigation. All groups participated in their respective programs 3 days per week for 10 weeks. Strength was assessed using a Cybex II isokinetic dynamometer set at an angular velocity of 60° · s ?1 and a damping of 2. The FW group served as the control group for the assessment of [Vdot]O 2 max changes, while the R group served as controls for the assessment of strength differences. ANCOVA revealed that the N and R groups experienced significant (p < .01) increases in [Vdot]O 2 max expressed in L · min ?1 (10.9 and 11.4%), ml · kg ?1 · min ?1 (10.8 and 11.7%), and ml · kgLBW ?1 · min ?1 (7.1 and 7.5%) when compared to the FW group. There were no significant differences between the N and R groups. There were no significant differences among groups in final peak torque values (after covariance), and torque at the beginning and end of the range of motion for the knee extensors, knee flexors, elbow extensors, and elbow flexors. In general, isokinetic strength values elicited by the N group compared favorably to those generated by the FW group. It was concluded that for a training period of short duration, Nautilus circuit weight training appears to be an equally effective alternative to standard free weight (strength) and aerobic (endurance) training programs for untrained individuals.  相似文献   

20.
Abstract

In this study, we examined thermoregulatory responses to ingestion of separate aliquots of drinks at different temperatures during low-intensity exercise in conditions of moderate heat stress. Eight men cycled at 50% (s = 3) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.3°C, s = 0.5; relative humidity: 60%, s = 5). Four 400-ml aliquots of flavoured water at 10°C (cold), 37°C (warm) or 50°C (hot) were ingested after 30, 45, 60, and 75 min of exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. There were no differences between trials in rectal temperature at the end of the 90 min of exercise (cold: 38.11°C, s = 0.30; warm: 38.10°C, s = 0.33; hot: 38.21°C, s = 0.30; P = 0.765). Mean skin temperature between 30 and 90 min tended to be influenced by drink temperature (cold: 34.49°C, s = 0.64; warm: 34.53°C, s = 0.69; hot: 34.71°C, s = 0.48; P = 0.091). Mean heart rate from 30 to 90 min was higher in the hot trial (129 beats · min?1, s = 7; P < 0.05) than on the cold (124 beats · min?1, s = 9) and warm trials (126 beats · min?1, s = 8). Ratings of thermal sensation were higher on the hot trial than on the cold trial at 35 and 50 min (P < 0.05). Exercise capacity was similar between trials (P = 0.963). The heat load and debt induced by periodic drinking resulted in similar body temperatures during low-intensity exercise in conditions of moderate heat stress due to appropriate thermoregulatory reflexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号