首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
我们在用均值定理求某些函数的最值时,一般都能按照均值定理的3个要求:“一正、二定、三相等”来求函数的最大值或最小值.然而,我们在领略到它的方便快捷之后,不禁产生困惑:“一正”、“三相等”都好理解,为什么要规定“二定”?为什么函数式中含变量的各项的和或积必须是定值,才能使用该定理?或者只有a+b,ab有一个为定值才能用该公式?当然不是,该定理使用只有在求最值的时候,才需要注意“二定”问题.那么如何理解求最值时,要考虑“二定”的问题呢?  相似文献   

2.
在应用均值不等式的有关定理求最值时,要把握定理成立的三个条件,就是“一正——各项都是正数;二定——积或和是定值;三等——等号能否取得.”若忽略了某个条件,就会出现各种似是而非的错误.  相似文献   

3.
运用均值不等式求最值是一种常用的求最值的方法,但在运用均值不等式求最值时必须同时注意三个条件,即“一正,二定,三相等”。“一正”是指各项必须为正,“二定”是指各项的乘积或各项之和为定值,“三相等”是指各项可取到相等的值。忽视其中任何一个条件,都会导致解题错误。  相似文献   

4.
运用基本不等式a+b/2≥√ab时,要满足“一正”(即条件中王各项为正数),“二定”(和或积必须为定值),“三相等”(等号能取到)这三个条件,缺一不可.  相似文献   

5.
在教学实践中,学生一般都能用均值定理求一个变量的最值,这只需按照“一正、二定、三等”六字诀即可搞定;但是,对于含双元(或两个以上)的最值问题,学生往往能列出式子,但无法求出最值来!笔者的体会是,不必拘泥于“定值”二字,而应尝试用均值定理去“化积”、“化和”,从而把这个非定值的积或和约分,进而突破“瓶颈”,使问题获解.举例说明如下:  相似文献   

6.
我们熟知,利用均值不等式求最值,必须具备三个条件:“一正二定三相等”,其中尤为重要的是和(积)为定值。本文就题设未给出和(积)为定值的条件下,如何凑出定值求出最值.谈四种常用的变凑方式.[第一段]  相似文献   

7.
辩证唯物主义世界观认为:世界是普通联系的和变化发展的,因此我们要具体问题具体分析,不能墨守成规、千篇一律.因此在使用极值定理时也不能盲目使用,必须要同时满足"一正、二定、三相等"三个条件,否则就会导致错误的结论.下面对不满足"一正、二定、三相等"类最值问题进行具体问题具体分析.  相似文献   

8.
辩证唯物主义世界观认为:世界是普遍联系的和变化发展的,因此我们要具体问题具体分析,不能墨守成规、千篇一律.因此在使用极值定理时也不能盲目使用,必须要同时满足"一正、二定、三相等"三个条件,否则就会导致错误的结论.下面对不满足"一正、二定、三相等"类最值问题进行具体问题具体分析.  相似文献   

9.
用均值不等式求函数最值的关键是:将函数变形为两项的和(或积)的形式,然后用均值不等式求出最值.但在应用均值不等式解题时必须验证: 一正:各项的值均为正; 二定:各项的和或(积)为定值; 三相等:取等号的条件.  相似文献   

10.
运用基本不等式求最值,是中学数学中求最值的基本方法之一.众所周知用基本不等式求最值时,必须满足三个条件:(1)表达武中含变量的项是正的;(2)表达武中含变量的项之和(积)是定值;(3)表达式中含变量的项能够相等.以上三个条件通常简称为一正二定三相等.  相似文献   

11.
针对现行高中的高二数学(上)中第六章《不等式定理求某些函数的最大或最小值。简称“一正等式》的6.2节《算术平均数与几何平均数》这一二定三相等”。  相似文献   

12.
函数最值问题是高中数学教学的重要内容之一,而用均值定理求最值是一种重要方法,该法要求具备“一正、二定、三相等”的条件,如果这些条件不完全具备时就不能直接使用,常需对函数式作“添、裂、配、凑”变形使其完全满足条件后方可用之,对变形能力的要求较高.然而有些题目由解析式的自然形态根本凑不出定值,  相似文献   

13.
张学明 《甘肃教育》2005,(12):55-55
均值不等式的应用必须满足三要素:一正(变量均为正数),二定(变量积或和为定值),三等(等号成立),三者缺一不可.应用之关键是构造定值,构造的.方法常用拆项法和增减常数法,下面举例说明.  相似文献   

14.
用均值定理求最值必须满足一正、二定、三相等这三个条件,而用它求最大(小)值或证明不等式的关键是构造出几个正数的和或积为定值,且使等号成立.如何构造成为成功解题的关键.笔者通过研究发现在构造中数字“1”的作用不容忽视,下面举例说明.  相似文献   

15.
利用均值定理解决形如已知ax+by=c(a〉0,b〉0,c〉0)求A/x+B/y(A〉0,B〉0)的二元条件最值问题时,必须满足“一正、二定、三相等”的条件,否则所得到的结果就会出现错误.解决此类条件最值问题时,若能抓住条件中各量的特点构造常数1,再逆向代人所求式中化简变形后可满足平均值不等式的三个条件,最后顺利求得最值.下面举例说明.  相似文献   

16.
不等式是高中数学的重要内容之一,而基本不等式√ab≤a+b/2(a≥O,b≥O)的应用则是重中之重,它具有将“和式”转化为“积式”或将“积式”转化为“和式”的放缩功能,同时也是证明不等式及求函数最值的重要工具.明确基本不等式的应用条件,灵活使用基本不等式是成功解题的关键,使用时要注意“一正、二定、三相等”的条件限制.  相似文献   

17.
基本不等式(√a^2+b^2)/2≥(a+b)/2≥√ab(当且仅当a=b时,等号成立)的应用要注意两个问题:(1)“一正二定三等”.一正,即a,b两个数为正数;二定,即两个正数的乘积为定值;三等,即等号成立的等价条件是“a=b”.(2)规律是:积定和最小,和定积最大.本文谈谈基本不等式在解析几何中的运用.  相似文献   

18.
"两个正数的算术平均数不小于它们的几何平均数"是不等式一章的一个重要定理.它在不等式的证明、求函数的最值和解决实际问题中应用非常广泛.应用这个定理求最值时,要求满足"一正、二定、三相等"3个条件,即变量是正数、和或积是定值、等号成立.应用这个定理的关键步骤是通过变形将积或和变为定值.但同学们在应用时常常出现错解,下面通过分析错解的原因来强化应注意的几个问题.  相似文献   

19.
均值不等式n+6≥2√ab(a,b∈R^+,当且仅当a=b时取“=”),在应用的过程中会经常用来求最小(大)值.同学们也会牢记“一正二定三相等”的七字真经.但应用中却常常会存在这样或那样的错误.  相似文献   

20.
本文举例说明利用基本不等式求最值的各种方法(在应用基本不等式求最值时必须确保“一正、二定、三相等”),供同学们参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号