首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了碳源和氮源种类、碳源浓度以及起始pH值对假丝酵母Candidasp。菌株发酵生产脂肪酶的影响。结果显示,最适碳源为橄榄油,氮源为酵母膏,橄榄油浓度为2%,起始pH值为6.0。应用响应面试验设计对酵母膏、橄榄油和起始pH值进行培养基优化,结果表明,优化后的培养基配方为:橄榄油2.582%,酵母膏0.276%,K2HPO4 0.1%,MgSO4·7H2O 0.01%,NaCl 0.05%,pH6.28。在此条件下,假丝酵母Candidasp.液体发酵液中脂肪酶的酶活力可达36250U·mL^-1。  相似文献   

2.
实验采用单因素试验优化纳豆菌液体发酵条件。通过蛋白凝块溶解时间法测定纳豆激酶活力,筛选出最佳培养条件。液态发酵选用甘油、乳糖以及木糖与葡萄糖的混合糖代替基础培养基中的麦芽糖;用酵母膏、干酪素、胰蛋白胨和黄豆汁代替基础培养基中的麸皮进行发酵产酶试验,筛选出最佳碳氮源,并在此基础上变换不同的碳、氮源浓度,筛选出最佳的碳、氮比。试验结果表明:液态发酵最佳条件为,甘油10%,酵母膏2%,明胶0.5%,NaCl 0.5%,KH2PO4 0.1%,K2HPO4 0.4%,MgSO4 0.05%,初始pH7.0。在此条件下培养,测得的纳豆激酶活力相当于尿激酶1081.22IU/mL。与此前报道结果800.50IU/mL相比有了明显的提高。  相似文献   

3.
Cytosine-substituted mildiomycin analogue (MIL-C) was produced effectively by supplementing cytosine into the culture of Streptoverticillium rimofaciens. In order to improve the yield of MIL-C, statistically-based experimental designs were applied to optimize the fermentation medium for S. rimofaciens ZJU 5119. Fifteen culture conditions were examined for their significances on MIL-C production using Plackett-Burrnan design. The Plackett-Burman design and one-variable-at-a-time design indicated that glucose and rice meal as the complex carbon sources, and peanut cake meal and NH4NO3 as the complex nitrogen sources were beneficial for MIL-C production in S. rimofaciens ZJU 5119. The results of further central composition design (CCD)showed that the optimal concentration of glucose, rice meal and peanut cake meal were 18.7 g/L, 64.8 g/L and 65.1 g/L,respectively. By using this optimal fermentation medium, the MIL-C concentration was increased up to 1336.5 mg/L, an approximate 3.8-fold improvement over the previous concentration (350.0 mg/L) with un-optimized medium. This work will be very helpful to the large-scale production of MIL-C in the future.  相似文献   

4.
PSO312是从土壤分离的1个青霉菌株,生长中能产生不同酸碱性条件下显黄色与紫红色等天然色素物质.通过菌株固体平板上恒温培养,168h测定菌落直径的方法研究了温度、pH及碳、氮源对菌株(Penicilliumsp.)生长的影响.研究表明31℃为菌株生长的最适温度.31℃培养以pH2—3的最快,pH8—9生长次之,24℃培养以pH8—9生长最快,pH3—4其次.菌株以蛋白胨4g/L、牛肉膏4g/L、酵母膏2g/L及尿素2g/L为氮源培养的菌落直径分别为55.75mm、51.5mm、55.5mm及25.3mm.在(NH4)2SO4 2g/L、NH4NO3 3g/L、NaNO3 4g/L、KN034g/L用量之上培养生长最快,菌落直径分别为35mm、34mm、35mm、及32mm.葡萄糖、蔗糖用量30g/L、果糖20g/L及乳糖25g/L的生长速率最快,菌落直径分别为45mm、38mm、38mm及39mm.丙三醇与淀粉25g/L培养的菌落直径均为39mm.  相似文献   

5.
Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization.Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each sig-nificant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by mul-tiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x1 (urea)=0.163 (41.63 g/L), x2 (Na2CO3)=-1.68 (2.64 g/L), x3 (MGSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization.  相似文献   

6.
Fermentation ofPhaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.  相似文献   

7.
实验以杨树中的产脂内生真菌为出发菌株,以PDA培养基为种子培养基,探索了不同的碳源、氮源、无机盐、pH值和装液量等参数对产脂内生真菌种子培养的影响.实验确定最佳工艺参数为:碳源为4%,氮源为0.5%,KH2PO4为0.4%,MgSO4为0.2%,pH值为5.5,装液量为50%.在上述条件下,菌种量都最先进入稳定期.  相似文献   

8.
研究氮源、碳源、温度、pH、光照条件和基质含水量对北冬虫夏草菌丝体生长的影响.结果表明:北冬虫夏草菌丝生长最适氮源为蛋白胨和柠檬酸铵;最适碳源为葡萄糖和蔗糖;最适温度为20-25℃;最适pH为6~7最适基质含水量为80%暗培养对菌丝体生长有明显的促进作用.  相似文献   

9.
采用MAP沉淀法预处理高浓度氨氮废水,以MgCl2·6H20、Na2HPO4·12H2O为沉淀剂,研究了该方法脱氮的主要影响因素,得出最佳工艺条件,在室温条件下,pH值为7.25左右,反应摩尔比n(Mg2+)∶n(NH4+)∶n(PO43-)为1.2∶1∶1.1,反应20 min,静置30 min,对于氨氮浓度大于3 000 mg/L的废水,氨氮去除率平均可以达到98%以上。  相似文献   

10.
Five thermophilic strains that can degrade cellulose were isolated from the compost of a waste management in Guangzhou, China. Since one of them degraded cellulose effectively, it was chosen as the study strain. Based on its morphology, spores‘ susceptibility to heat, cell wall composition and other characteristics, the organism was classified as Thermomonospora fusca. Conditions for production of carboxy methyl cellulase (CMCase) were examined. The optimal temperature and pH value for enzyme production were 50℃ and 10.5, respectively. Cellulosic materials and easily metabolisable carbohydrates served as carbon sources for the growth of the strain. Only cotton, avicel,carboxy methyl cellulose (CMC) acted as potent inducers for the production of cellulases by this strain. Despite excellent growth on easily metabolisable carbohydrates, only constitutive levels of cellulases were produced. The optimal carbon and nitrogen sources for CMCase production were cotton and soybean respectively. The high thermostability, wide pH stability, and cheap nitrogen source show well potential use for composting treatment and commercial detergents.  相似文献   

11.
INTRODUCTION The difficulties associated with large-scaleproduction of biotherapeutics provide a constantchallenge to the biotechnology industry. FDA hadadded “therapeutic DNA plasmid vectors” to the listof well-characterized biotechnology product (DoHHs,1996), and gene therapy has moved rapidly fromlaboratory scale to clinical trials. It is urgent to de-velop new protocols to obtain high-quality plasmidswith high yields and minimal or no contamination ofRNA and chromosomal D…  相似文献   

12.
凯氏定氮法测定虾壳中氮含量   总被引:1,自引:0,他引:1  
自组一套简易凯氏定氮装置,对提高装置气密性方法进行研究,并采用单次单因子法对加入双氧水测定虾壳中氮含量的消化条件进行了研究,通过与国标法进行对比,确定该方法测定虾壳中氮含量的可行性。结果表明,加氢氧化钠的漏斗采用水封能提高蒸馏装置的气密性;最佳消化条件为:虾壳0.2 g,五水硫酸铜0.2 g,硫酸钾0.6 g,浓硫酸8 mL,双氧水4 mL,消化40 min。所测虾壳氮含量为(63.48±0.88)mg/g(P=0.95),加标回收率在95%~100%。该法准确度与国标法相当,且省时、经济、环保,适用于实验教学、科研和生产实践。  相似文献   

13.
Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cul- tures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410.  相似文献   

14.
A newly isolated strain EL31410, producing elastase (E. C3. 4. 4. 7) with high elastolytic activity was identified asBacillus sp. In the medium optimization, it was found that wheat bran and soybean flour hydrosate were the best crude carbon and nitrogen source for enzyme production, respectively. Addition of corn steep flour can affect the bacterium growth and elastase production. A fractional factorial design was applied to study the main factors that affect the enzyme production, and central composite experimental design and response surface methodology were adopted to derive a statistical model for the effect of wheat bran and soybean flour hydrosate on elastase production. The experimental results showed that wheat bran had positive effect but soybean flour hydrosate had negative effect, on enzyme production. An initial concentration of 3.4% (w/v) wheat bran and 9.4% (v/v) soybean flour hydrosate were found to be optimal for enzyme production in batch culture. The time course of elastase production in the optimized medium composition was also described. Project (No. 300024) supported by the Zhejiang Provincial Natural Science Foundation of China  相似文献   

15.
以测定的抑菌圈直径大小判定拮抗细菌的拮抗性能,并通过单因素及正交试验对拮抗细菌发酵培养基组分及发酵条件进行设计与优化.结果表明,最优化发酵培养基组成为淀粉3 g/L,蛋白胨12 g/L,氯化钙3 g/L,利用最佳发酵培养基进行条件为初始pH 8.0,接种量8%,装液量75 mL/250 mL,发酵时间24 h的发酵,此拮抗细菌的拮抗性能最佳,抑菌圈直径达2.6 cm左右.该研究为进一步提高拮抗细菌拮抗性能提供一定参考数据,同时也为拮抗细菌更好地应用提供必要的理论依据.  相似文献   

16.
Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. It was observed that the lag phase of cell growth of partial PEP4 gene deletion mutant (36 h) and PrA-negative mutant (48 h) was significantly ex-tended, compared with the wild type strain (24 h) (P<0.05), but PrA had no effect on glucose metabolism either under shaking or steady state cultivations. The logistic model was chosen to evaluate the effect of PrA on S. cerevisiae cell growth, and PrA was found to promote cell growth against insufficient oxygen condition in steady state cultivation, but had no effect in shaking culti-vation. The effects of glucose starvation on cell growth of partial PEP4 gene deletion strain and PrA-negative mutant were also evaluated. The results show that PrA partial deficiency increased the adaption ofS. cerevisiae to unfavorable nutrient environment, but had no effect on glucose metabolism under the stress of low glucose. During heat shock test, at 60 ℃ the reduced cell viability rate (RCVR) was 10% for the wild type S. cerevisiae and 90% for both mutant strains (P<0.01), suggesting that PrA was a negative factor for S. cerevisiae cells to survive under heat shock. As temperatures rose from 60 ℃ to 70 ℃, the wild type S. cerevisiae had significantly lower relative glucose consumption rate (RGCR) (61.0% and 80.0%) than the partial mutant (78.0% and 98.5%) and the complete mutant (80.0% and 98.0%) (P<0.05), suggesting that, in coping with heat shock, cells of the PrA mutants increased their glucose consumption to survive. The present study may provide meaningful information for brewing industry; however, the role of PrA in industrial S. cerevisiae physiology is complex and needs to be further investigated.  相似文献   

17.
After deregulating the purine and riboflavin synthesis in the Gram-positive bacterium Bacillus subtilis,it is critical to amplify riboflavin operon with appropriate dosage in the host strain for remarkable increase of riboflavin production. Bacillus subtilis RH13, a riboflavin-producing strain, was selected as host strain in the construction of engineering strains by protoplast fusion. The integrative plasmid pRB63 and autonomous plasmid pRB49, pRB62 containing riboflavin operon of B. subtilis 24 were constructed and transformed into the host strain respectively. Increasing one operon copy in B. subtilis RH13 results in about 0. 4 g/L improvement in riboflavin yield and the appropriate number of operon copies was about 7--8. Amplifying more riboflavin operons is of no use for further improvement of yield of riboflavin. Furthermore, excessive operon dosage results in metabolic unbalance and is fatal to the host cells producing riboflavin.  相似文献   

18.
通过单因素及正交试验,对分离得到的一株抗甲醛真菌进行了培养条件的优化.结果表明:牛肉膏对其甲醛抗性的影响较明显;FeSO4·3H2O对菌体浓度的影响较显著.正交实验分析得到最优的培养基为:葡萄糖4%,牛肉膏0.4%,MgSO4·7H2O 0.1%,FeSO4·3H2O 0.01%,KCl 0.05%,pH7.5.在此条件下菌株抗甲醛浓度临界值为6.52mg/mL,较之前提高了94.6%.  相似文献   

19.
本文对硫酸盐还原菌产亚硫酸盐还原酶的发酵工艺条件进行了初步研究,主要内容包括硫酸盐还原菌发酵条件:碳源、氮源、温度、起始pH、装液量及发酵周期等.实验研究表明,以尿素作为氮源,以可溶性淀粉为碳源,C:N比为1:3,在初始pH7.0的条件下,接种量为5%,装液量为1:3(v/v),35℃摇床培养42h,酶活力可达到16.2U/mL.  相似文献   

20.
An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface methodology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO4@7H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM,showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO4@7H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号