首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
直角四面体(也叫直角三棱锥)是由同一点出发的,两两互相垂直的三条棱所构成的四面体,其中两两垂直的三条棱叫直角棱,两两垂直的三个面叫直角面,另一个面相对来说叫做斜面。  相似文献   

2.
有这样一个常见的四面体 (如图一 ) :棱PA⊥底面ABC ,AC⊥BC 这个四面体有如下几个已知的性质 :性质 (1 )四面体PABC中共有四个Rt△ ,分别是 :Rt△PAB,Rt△PAC,Rt△ABC,Rt△PBC.性质 (2 )四面体PABC中共有三个面互相垂直 ,分别是 :面P  相似文献   

3.
<正>有一种特殊的四面体,它的同一顶点上的3条棱两两垂直,我们不妨将其称之为直四面体,含直角的面称为直角面,不含直角的面称为斜面.  相似文献   

4.
我们称三条侧棱两两互相垂直的四面体叫直角四面体,直角四面体具有对棱互相垂直且顶点在底面的射影是底面三角形的垂心等性质,在教学中发现这种四面体还具有一些美妙独特的性质,现归纳如下,仅供参考。  相似文献   

5.
液体表面张力的作用效果 ,使液体的表面积收缩最小 .用正方体铁丝架拉出的肥皂膜并不是正立方六面体 ,而是如图 1所示的肥皂膜形状 ,怎样从表面张力使表面积最小的结论 ,去解释这个现象呢 ?先介绍预备定理 .①定理 1 :在三角形内一点与三个顶点的连线 ,若两两夹角为 1 2 0°,那么该点与三个顶点所连线段之和最短 .该点称为费马点 .图 1          图 2设P为△ABC内一点 ,若∠APB =∠BPC =∠CPA =1 2 0° ,那么AP +BP +CP最小 .分析 :连接PA、BP、CP ,将△ACP绕A点逆时针旋转 60°到△AC′P′处如…  相似文献   

6.
四面体与长方体模型是联系空间点、线、面的两个基本图形,也是高考试题中出现频率较高的几何模型。本文试以近年来的高考题为例,探讨这两种模型在解题中的应用,供参考。例1、(1)长方体一个顶点上三条棱的长分别是3、4、5,且它的八个顶点都在同一个球面上,求这个球的表面积、(1997年高考题)(2)正方体全面积是a~2,它的顶点都在球面上,求这个球的表面积、(1995年高考题)(3)在球面上有P、A、B、C四点,若PA、PB、PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。(1994年高考题)…  相似文献   

7.
圆锥曲线中与对称轴不垂直的焦点弦两端点为A、B(当曲线是双曲线时 ,A、B在双曲线的同一支上 ) ,其在对应的准线上的射影分别是D、C ,四点A、B、C、D所围成的四边形称之为圆锥曲线的焦直角梯形 ,简称为焦直角梯形 .如图 1,焦直角梯形ABCD中 ,显然有|AF| =e|AD| ,|BF|=e|BC| ,其中e为离心率 .     图 1性质 1 焦直角梯形ABCD中 ,F为焦点 ,EF ⊥CD于E ,P为EF的中点 ,则A、P、C ,B、P、D三点共线 .证明 连结AC交EF于P′(如图 1) ,设|AD|=m ,|BC| =n ,则|AF| =…  相似文献   

8.
具有由同一点出发的两两互相垂直的三条棱的四面体称为直角四面体,其性质的研究对中学数学创新性教学,对深化学生的类比学习思想,开阔学生的视野,都有着相当的份量,我们从下面的高考真题可见其重要性:  相似文献   

9.
<正> 一个四面体P-ABC,若PA、PB、PC两两垂直,则这个四面体可称为直角四面体(如图1),这与平面几何中的直角三角形类似. 对直角四面体P-ABC,有 (1)S2PAB+S2PAC+S2PBC=S2ABC; (2)△ABC是锐角三角形. (3)设三个直角面PAB、PBC、PAC与面ABC所成的二面角的大小分别为α、β、γ,则  相似文献   

10.
二面角的平面角的作法有定义法 ,三垂线定理(或逆定理 )法和垂面法三种 ,在解决与二面角有关的问题时 ,人们都习惯于采用前两种方法 ,而极少用到后一种方法 ,其实有些关于二面角的问题 ,特别是棱未作出的二面角的问题 ,若用垂面法则更为简捷 .特举数例 ,仅供参考 .例 1 过正方形ABCD的顶点A ,引PA⊥平面ABCD ,若PA =AB ,则平面ABP与平面CDP所成二面角的大小是 .图 1解 如图 1,由PA⊥面ABCD ,知面PAD⊥面ABCD .又ABCD为正方形 ,有AB⊥AD ,CD⊥AD ,得AB⊥面PAD ,CD⊥面PAD ,所以面…  相似文献   

11.
<正>在四面体这部分知识中,有一个种特殊情形,即含有三条两两垂直的棱且相互连接的四面体。如图1,四面体ABCD中,AB、BC、CD两两垂直。此四面体有着丰富而精彩的性质,这些性质在许多的立体几何的问题处理中起着模型的作用。为方便称此模型为三节棍模型。性质1三节棍模型的四个面都是直角三角形。由AB、BC、CD两两垂直易知AB⊥平面BCD,CD⊥平面ABC,所以四面体的四  相似文献   

12.
若四面体的四条高线交于一点,则称这点为四面体的垂心。四面体并不总有垂心。文[1]中给出四面体存在垂心的充要条件是两组对棱分别垂直。一般说来,垂心存在的四面体与三角形有更多的类似性质。本文获得  相似文献   

13.
在求点到平面的距离中 ,有很多题常采用间接的方法 ,而在间接方法中又以等积变换为常见 .下面介绍一种新方法 ,为我们在解题中提供一条途径 .     图 1如图 1,设线段AB上一点P分线段AB为mn(APBP =mn) ,若平面α过P点与线段AB相交 ,则易证A点到平面α的距离是B点到α距离的 mn 倍 .简证 分别过A、B作平面α的垂线 ,C、D分别为垂足 ,连CD(P一定在CD上 ) .由△ACP ∽△BDP ,得 ACBD =APBP =mn ,即AC =mn ·BD .下面举例说明它的应用例 如图 2 ,在棱长为a的正方体ABCD—A1B1…  相似文献   

14.
长方体是立体几何中的基本几何体,其结构对称,各元素之间存在着相等、平行、垂直等关系,是研究线面关系、特殊几何体的一个重要载体.某些四面体可以看成是"寄居"在长方体内.如三组对棱分别相等的四面体、直角四面体(即一个顶点处的三条棱两两垂直)都可以看成是长方体的寄居体;  相似文献   

15.
我们知道圆x2 + y2 =R2 在其上任一点 (x0 ,y0 )处的切线方程为x0 x+ y0 y=R2 如果对于直线Ax+By +C =0 (C ≠ 0 )作如下变形 :R2 A-CR2 x +R2 B-CR2 y =1.若点P(- R2 AC ,- R2 BC )满足圆的方程 ,则直线与圆相切于点P .椭圆 x2a2 + y2b2 =1在其上任一点 (x0 ,y0 )处的切线方程为 x0 xa2 + y0 yb2 =1,对于直线Ax+By +C =0 (C≠ 0 )作如下变形 :    a2 A-Ca2 x+b2 B Cb2 y=1.若点P(- a2 AC , b2 BC )满足椭圆方程 ,则直线与椭圆相切于点点P .双曲线x2a2 - y2…  相似文献   

16.
在平面上,当一个三角形的两条边互相垂直时,该三角形的外接圆直径的平方等于两直角边的平方和。而在四面体中,也类似地有: 引理:三条棱互相垂直的四面体的外接球直径的平方等于这三条棱的平方和。 证明:以这三条两两互相垂直的棱为长、宽和高,作一长方体,而该长方体的对角线恰是它的外接球直径,从而也是已知四面体的外接球直径,由于长方体的对角线的平方等于它  相似文献   

17.
求一个二面角的平面角的大小是高中立体几何的一个重要内容 ,也是一个难点 .学生往往不是不会计算 ,而是找不到二面角的平面角 .二面角的平面角定义告诉我们 :以二面角棱上任意一点为端点 ,在两个面内分别作垂直于棱的两条射线 ,这两条射线所成的角叫做二面角的平面角 .我们可以将这两条射线叫做“前两个量” ,如图 1 ,二面角α—l—β ,P∈l,PA α ,PB β且PA⊥l,PB⊥l,将PA、PB叫做“前两个量” .连结AB ,可以将“AB”叫做“第三个量” ,显然AB⊥l.在实际解题过程中 ,无论是已知二面角的大小还是要求二面角的大…  相似文献   

18.
在高考中 ,经常会出现与二面角有关的题目 .但考生在学习这个内容时 ,感到比较抽象 ,主要原因就是不会确定二面角的平面角 .其实 ,二面角的平面角就是一个“平面角” ,其两边相交于棱上的一点 .如何才能确定出二面角的平面角呢 ?本人根据自己的教学经验 ,结合例题加以总结如下 .一、找已知图形中是否已有二面角的平面角 .紧扣定义 ,先找出顶点在棱上 ,两边分别在两个半平面的角 ,再看角的两边是否垂直于棱 ,若垂直 ,那么 ,这个角就是二面角的平面角 .例 1 在三棱锥P-ABC中 ,PA ⊥底面ABC ,∠ACB =90°,且PA =2 ,AB =5,BC…  相似文献   

19.
文[1]证明了矩形外接国周上点的有趣性质:“定理:矩形外接圆周上任一点到矩形各边中点的距离的平方和为定值”。文[2]注意到性质中“各边中点”的特殊性,在二维空间(平面)上作了一般的推广。笔者运用类比的思考方法:把矩形和等对棱四面体(或长方体)类比,把圆周和球面类比,将这一性质拓展到三维空间中而获得颇为有趣的结论:定理等对校四面体外接球面上任一点到该四面体的各面三角形重心的距离的平方和为定值。何谓等对棱四面体,我们称三组对核分别相等的四面体为等对校四面体,过四面体每条校可作唯一平面平行于对棱,六个面围成…  相似文献   

20.
20 0 1年高考理科第17题 :如图 1,在底面是直角梯形的四棱锥S -ABCD中 ,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =12 .(Ⅰ)求四棱锥S-ABCD的体积 ;(Ⅱ)求面SCD与面SBA所成二面角的正切值 .它的第二个问题并没有给出二面角的棱但却要求二面角的正切值 ,像这种没有给出棱的二面角我们称为“无棱二面角” .求解“无棱二面角”的问题有两种思路 :一种是不作出二面角的棱 ,直接用面积射影定理cosθ =S射S原或三面角余弦公式cosθ =cosα -cosβ·cosγsinβsinγ 求解 ;一种是作出…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号