首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of this study was to investigate the kinematic and metabolic effects of running on an irregular surface. We also examined how altering the frontal plane foot angle (inversion/eversion) at contact using real-time visual feedback would affect these other variables. Sixteen participants completed three running bouts lasting 5–7 minutes each on an irregular surface (IS) treadmill, a traditional smooth surface (SS) treadmill, and on SS while receiving visual feedback of the frontal plane foot angle at contact (SSF) with a goal of matching IS foot angle on SS. Frontal plane foot angle increased 40% from IS to SS (IS: 8.4 ± 4.09°, SS: 11.8 ± 4.52°, < 0.0001, ES 1.40). Knee flexion angle at contact decreased 33% from IS to SS (IS: 9.2 ± 4.88°, SS: 6.2 ± 5.03°, < 0.0001, ES 1.30). Rate of oxygen consumption decreased by 10% from IS to SS (IS: 37.9 ± 5.68 ml·kg?1·min?1, SS: 34.1 ± 5.07 ml·kg?1·min?1, P < 0.0001, ES 3.05). PSD of leg accelerations decreased by 38% (IS: 0.17 ± 0.07 g2/Hz, SS: 0.106 ± 0.05 g2/Hz, < 0.000, ES 1.69). Frontal plane foot angle decreased by 14% from SS to SSF (SS: 11.8 ± 4.52°, SSF: 10.1 ± 4.42°, P = 0.027. ES 0.62) but did not result in significant changes in any other variables. There were no significant differences in shock attenuation between any conditions (IS: ?9.8 ± 2.26 dB, SS: ?9.5 ± 3.12 dB, SSF: ?9.9 ± 2.62 dB, P = 0.671). Running with greater eversion on the irregular surface may be an attempt by runners to reduce the perceived potential of an inversion ankle sprain. As a partial compensation for the decreased foot angle, runners increased knee flexion. This maintained shock attenuation but increased the rate of oxygen consumption. Altering the foot angle at contact using feedback on the SS caused the knee angle at contact to increase, but did not change shock attenuation or metabolic cost.  相似文献   

2.
Abstract

Detailed time-series of the resultant joint moments and segmental interactions during soccer instep kicking were compared between the preferred and non-preferred kicking leg. The kicking motions of both legs were captured for five highly skilled players using a three-dimensional cinematographic technique at 200 Hz. The resultant joint moment (muscle moment) and moment due to segmental interactions (interaction moment) were computed using a two-link kinetic chain model composed of the thigh and lower leg (including shank and foot). The mechanical functioning of the muscle and interaction moments during kicking were clearly illustrated. Significantly greater ball velocity (32.1 vs. 27.1 m · s?1), shank angular velocity (39.4 vs. 31.8 rad · s?1) and final foot velocity (22.7 vs. 19.6 m · s?1) were observed for the preferred leg. The preferred leg showed a significantly greater knee muscle moment (129.9 N · m) than the non-preferred leg (93.5 N · m), while no substantial differences were found for the interaction moment between the two legs (79.3 vs. 55.7 N · m). These results indicate that the highly skilled soccer players achieved a well-coordinated inter-segmental motion for both the preferred and non-preferred leg. The faster leg swing observed for the preferred leg was most likely the result of the larger muscle moment.  相似文献   

3.
Purpose: There is uncertainty as to which knee angle during a squat jump (SJ) produces maximal jump performance. Importantly, understanding this information will aid in determining appropriate ratios for assessment and monitoring of the explosive characteristics of athletes. Method: This study compared SJ performance across different knee angles—90º, 100º, 110º, 120º, 130º, and a self-selected depth—for jump height and other kinetic characteristics. For comparison between SJ and an unconstrained dynamic movement, participants also performed a countermovement jump from a self-selected depth. Thirteen participants (Mage = 25.4 ± 3.5 years, Mheight = 1.8 ± 0.06 m, Mweight = 79.8 ± 9.5 kg) were recruited and tested for their SJ performance. Results: In the SJ, maximal jump height (35.4 ± 4.6 cm) was produced using a self-selected knee angle (98.7 ± 11.2°). Differences between 90°, 100°, and self-selected knee angles for jump height were trivial (ES ± 90% CL = 90°–100° 0.23 ± 0.12, 90°–SS ?0.04 ± 0.12, 100°–SS ?0.27 ± 0.20; 0.5–2.4 cm) and not statistically different. Differences between all other knee angles for jump height ranged from 3.8 ± 2.0 cm (mean ± 90% CL) to 16.6 ± 2.2 cm. A similar outcome to jump height was observed for velocity, force relative to body weight, and impulse for the assessed knee angles. Conclusions: For young physically active adult men, the use of a self-selected depth in the SJ results in optimal performance and has only a trivial difference to a constrained knee angle of either 90° or 100°.  相似文献   

4.
We aimed to analyse the handgrip positioning and the wedge effects on the backstroke start performance and technique. Ten swimmers completed randomly eight 15 m backstroke starts (four with hands on highest horizontal and four on vertical handgrip) performed with and without wedge. One surface and one underwater camera recorded kinematic data. Standardised mean difference (SMD) and 95% confidence intervals (CI) were used. Handgrip positioning did not affect kinematics with and without wedge use. Handgrips horizontally positioned and feet over wedge displayed greater knee angular velocity than without it (SMD = ?0.82; 95% CI: ?1.56, ?0.08). Hands vertically positioned and feet over wedge presented greater take-off angle (SMD = ?0.81; 95% CI: ?1.55, ?0.07), centre of mass (CM) vertical positioning at first water contact (SMD = ?0.97; 95% CI: ?1.87, ?0.07) and CM vertical velocity at CM immersion (SMD = 1.03; 95% CI: 0.08, 1.98) when comparing without wedge use. Swimmers extended the hip previous to the knee and ankle joints, except for the variant with hands vertically positioned without wedge (SMD = 0.75; 95% CI: ?0.03, 1.53). Swimmers should preserve biomechanical advantages achieved during flight with variant with hands vertically positioned and wedge throughout entry and underwater phase.  相似文献   

5.
The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad?·?s?1 on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P <?0.05) were found between mean (?± s) peak knee joint power in the two tests (squat vertical jump: 2255?±?434W; isokinetic knee extension: 771?±?81W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.  相似文献   

6.
This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e. dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s?1. The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.  相似文献   

7.
Abstract

In this study, we investigated the adjustments to posture, kinematic and temporal characteristics of performance made by lower limb amputees during the last few strides in preparation for long jump take-off. Six male unilateral trans-femoral and seven male unilateral trans-tibial amputees competing in a World Championships final were filmed in the sagittal plane using a 100-Hz digital video camera positioned so that the last three strides to take-off were visible. After digitizing using a nine-segment model, a range of kinematic variables were computed to define technique characteristics. Both the trans-femoral and trans-tibial athletes appeared to achieve their reduction in centre of mass during the flight phase between strides, and did so mainly by extending the flight time by increasing stride length, achieved by a greater flexion of the hip joint of the touch-down leg. The trans-tibial athletes appeared to adopt a technique similar to that previously reported for able-bodied athletes. They lowered their centre of mass most on their second last stride (?1.6% of body height compared with ?1.4% on the last stride) and used a flexed knee at take-off on the last stride, but they were less able to control their downward velocity at touch-down (?0.4 m · s?1). Both this and their restricted approach speed (8.9 m · s?1 at touch-down), rather than technique limitations, influenced their jump performance. The trans-femoral athletes lowered their centre of mass most on the last stride (?2.3% of body height compared with ?1.6% on the second last stride) and, as they were unable to flex their prosthetic knee sufficiently, achieved this by abducting their prosthetic leg during the support phase, which led to a large downward velocity at touch-down (?0.6 m · s?1). This, combined with their slower approach velocity (7.1 m · s?1 at touch-down), restricted their performance.  相似文献   

8.
This study examined the relationship between leg preference and knee mechanics in females during sidestepping. Three-dimensional data were recorded on 16 female collegiate footballers during a planned 45° sidestep manoeuvre with their preferred and non-preferred kicking leg. Knee kinematics and kinetics during initial contact, weight acceptance, peak push-off, and final push-off phases of sidestepping were analysed in both legs. The preferred leg showed trivial to small increases (ES = 0.19–0.36) in knee flexion angle at initial contact, weight acceptance, and peak push-off, and small increases (ES = 0.21–0.34) in peak power production and peak knee extension velocity. The non-preferred leg showed a trivial increase (ES = 0.10) in knee abduction angle during weight acceptance; small to moderate increases (ES = 0.22–0.64) in knee internal rotation angle at weight acceptance, peak push-off, and final push-off; a small increase (ES = 0.22) in knee abductor moment; and trivial increases (ES = 0.09–0.14) in peak power absorption and peak knee flexion velocity. The results of this study show that differences do exist between the preferred and non-preferred leg in females. The findings of this study will increase the knowledge base of anterior cruciate ligament injury in females and can aid in the design of more appropriate neuromuscular, plyometric, and strength training protocols for injury prevention.  相似文献   

9.
This study aimed to determine if starting with the feet above the water (FAW) in male backstroke swimming resulted in faster start times (15-m time) than when the feet were underwater (FUW). It was hypothesised that setting higher on the wall would generate increased horizontal force and velocity, resulting in quicker starts. Twelve high-level male backstrokers performed three trials of the FAW and FUW techniques. A biomechanical swimming testing system comprising one force plate (1,000 Hz), four lateral-view (100 Hz), and five overhead (50 Hz) video cameras captured the swimmers' performance. Data for each participant's fastest trial for each technique were collated, grouped, and statistically analysed. Analysis included Wilcoxon, Spearman Rho correlation, and regression analysis. Wilcoxon results revealed a significantly faster start time for the FAW technique (p < 0.01). Peak horizontal force was significantly smaller for FAW (p = 0.02), while take-off horizontal velocity was significantly greater (p = 0.01). Regression analysis indicated take-off horizontal velocity to be a good predictor of start time for both techniques, and the horizontal displacement of the centre of mass for the FAW start.  相似文献   

10.
The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many “very likely” to “almost certain” relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.  相似文献   

11.
This investigation assessed whether a Technique Refinement Intervention designed to produce pronounced vertical hip displacement during the kicking stride could improve maximal instep kick performance. Nine skilled players (age 23.7 ± 3.8 years, height 1.82 ± 0.06 m, body mass 78.5 ± 6.1 kg, experience 14.7 ± 3.8 years; mean ± SD) performed 10 kicking trials prior to (NORM) and following the intervention (INT). Ground reaction force (1000 Hz) and three-dimensional motion analysis (250 Hz) data were used to calculate lower limb kinetic and kinematic variables. Paired t-tests and statistical parametric mapping examined differences between the two kicking techniques across the entire kicking motion. Peak ball velocities (26.3 ± 2.1 m · s?1 vs 25.1 ± 1.5 m · s?1) and vertical displacements of the kicking leg hip joint centre (0.041 ± 0.012 m vs 0.028 ± 0.011 m) were significantly larger (P < 0.025) when performed following INT. Further, various significant changes in support and kicking leg dynamics contributed to a significantly faster kicking knee extension angular velocity through ball contact following INT (70–100% of total kicking motion, < 0.003). Maximal instep kick performance was enhanced following INT, and the mechanisms presented are indicative of greater passive power flow to the kicking limb during the kicking stride.  相似文献   

12.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 ± 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 ± 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

13.
Abstract

The purpose of this study was to examine the effect of fatiguing exercise on sex-related differences in the function of hamstring and quadriceps muscles at several angular velocities and joint angles. Physically active participants (50 male: 28.7?±?4.5y, 1.82?±?0.07 m, 82.3?±?6.87?kg; 50 female: 27.0?±?5.8y, 1.61?±?0.08 m, 68.75?±?9.24?kg) carried out an isokinetic assessment to determine concentric and eccentric torques during knee extension and flexion actions at three different angular velocities (60/180/300°/s). The H/QFUNCT was calculated using peak torque (PT) values at 3 different joint-angle-specific (15°, 30° and 45° of knee flexion). A repeated measures analysis of variance (ANOVA) was used to compare within group results. Between group comparisons of sex-related differences were assessed by independent T-tests. Fatiguing exercise in males resulted in a decrease in H/QFUNCT ratios for each angle of knee flexion at both 60°/s and 300°/s angular velocities (p?<?0.05). In females, significant decreases in H/QFUNCT ratios were observed following fatiguing exercise for each angle of knee flexion and angular velocity (p?<?0.01). Significant differences in H/QFUNCT ratios following fatiguing exercise were evident between males and females at each joint angle and angular velocity (p?<?0.01). These findings indicate sex related differences in H/QFUNCT ratios following fatiguing exercise. Females have greater reductions in torque and H/QFUNCT ratios following fatigue than their male counterparts. This potentially exposes females to higher risks of injury, particularly when fatigued. Practitioners should attend to the imbalance in fatigue resistance of hamstring and quadriceps function, particularly in female athletes.  相似文献   

14.
The purpose of this study was to investigate effects of the ground reaction forces on the rotation of the body as a whole and on the joint torques of the lower limbs associated with trunk and pelvic rotation in baseball tee batting. A total of 22 male collegiate baseball players participated in this study. Three-dimensional coordinate data were acquired by a motion capture system (250 Hz), and ground reaction forces of both legs were measured with three force platforms (1,000 Hz). Kinetic data were used to calculate the moment about the vertical axis through the body’s centre of mass resulting from ground reaction forces, as well as to calculate the torque and mechanical work in the lower limb joints. The lateral/medial ground reaction force generated by both legs resulted in the large whole body moment about its vertical axis. The joint torques of flexion/extension of both hips, adduction of the stride hip and extension of the stride knee produced significantly larger mechanical work than did the other joint torques. To obtain high bat-head speed, the batter should push both legs in the lateral/medial direction by utilising both hips and stride knee torques so as to increase the whole body rotation.  相似文献   

15.
This study aimed to investigate whether treadmill versus overground soccer match simulations have similar effects on knee joint mechanics during side cutting. Nineteen male recreational soccer players completed a 45-min treadmill and overground match simulation. Heart rate (HR) and rating of perceived exertion (RPE) were recorded every 5 min. Prior to exercise (time 0 min), at “half-time” (time 45 min) and 15 min post-exercise (time 60 min), participants performed five trials of 45° side-cutting manoeuvres. Knee abduction moments and knee extension angles were analysed using two-way repeated measures analysis of variance (α = 0.05). Physiological responses were significantly greater during the overground (HR 160 ± 7 beats ? min?1; RPE 15 ± 2) than the treadmill simulation (HR 142 ± 5 beats ? min?1; RPE 12 ± 2). Knee extension angles significantly increased over time and were more extended at time 60 min compared with time 0 min and time 45 min. No significant differences in knee abduction moments were observed. Although knee abduction moments were not altered over time during both simulations, passive rest during half-time induced changes in knee angles that may have implications for anterior cruciate ligament injury risk.  相似文献   

16.
Impact is an important aspect of the kicking skill. This study examined foot and ball motion during impact and compared distance and accuracy punt kicks. Two-dimensional high-speed video (4000 Hz) captured data of the shank, foot and ball through impact of 11 elite performers kicking for maximal distance and towards a target 20 m in distance. Four phases were identified during impact, with an overall reduction in foot velocity of 5.0 m · s?1 (± 1.1 m · s?1) and increase in ball velocity of 22.7 m · s?1 (± 2.3 m · s?1) from the start to end of contact. Higher foot velocity was found in distance compared to accuracy kicks (22.1 ± 1.6 m · s?1 vs. 17.7 ± 0.9 m · s?1, P < 0.05), and was considered to produce the significant differences in all impact characteristics excluding foot-to-ball speed ratio. Ankle motion differed between the kicking tasks; distance kicks were characterised by greater rigidity compared to accuracy kicks evident by larger force (834 ± 107 N vs. 588 ± 64 N) and smaller change in ankle angle (2.2 ± 3.3° vs. 7.2 ± 6.4°). Greater rigidity was obtained by altering the position of the ankle at impact start; distance kicks were characterised by greater plantarflexion (130.1 ± 5.8° vs. 123.0 ± 7.9°, P < 0.05), indicating rigidity maybe actively controlled for specific tasks.  相似文献   

17.
Abstract

The differences between the racket-arm acceleration mechanisms during open and square stance forehand groundstrokes in tennis were examined by quantifying the mechanical work done on the racket arm. We studied 13 advanced tennis players as they performed these strokes at maximum effort and calculated the work using inverse dynamics. The racket head speed was similar between the open and square stances. In the open stance, the lack of weight shifting towards the hitting direction resulted in a lower velocity for the shoulder joint centre in the hitting direction than in the square stance, and less work was done by the shoulder joint force in the hitting direction in the open stance than in the square stance (0.30?±?0.11?J·kg-1 vs. 0.38?±?0.16?J·kg-1; p?=?0.005). However, in the open stance, the torso rotated more towards the hitting direction and had more upward acceleration, which resulted in more work done by the sideways and upward shoulder joint forces than in the square stance (sideways: 0.07?±?0.09?J·kg-1 vs. 0.05?±?0.09?J·kg-1, p?=?0.046; upward: 0.08?±?0.09?J·kg-1 vs. 0.04?±?0.07?J·kg-1, p?=?0.002). Thus, the greater work done by the sideways and upward shoulder joint forces compensated for the lesser work done by the shoulder joint force in the hitting direction in the open stance. In both stances, mainly the horizontal flexion torque and internal rotation torque at the shoulder increased the energy of the racket arm.  相似文献   

18.
The interaction between footwear and surfaces influences the forces experienced by tennis players. The purpose of this study was to investigate traction demand and kinematic adaptation during tennis-specific movements with changes in traction characteristics of surfaces. We hypothesised that players would increase the utilised coefficient of friction (horizontal to vertical ground reaction force ratio) when the shoe surface combination had a high coefficient of friction and flex their knee after contact to facilitate braking. Eight participants performed two separate movements, side jump out of stance and running forehand. Ground reaction force was measured and three-dimensional kinematic data were recorded. Clay surface and cushioned acrylic hard court (low vs. high shoe–surface friction) were used. The peak utilised coefficient of friction was greater on clay than the hard court. The knee was less flexed at impact on clay ( ? 5.6 ± 10.2°) and at peak flexion ( ? 13.1 ± 12.0°) during the running forehand. Our results indicate that tennis players adapt the level of utilised friction according to the characteristics of the surface, and this adaptation favours sliding on the low friction surface. Less knee flexion facilitates sliding on clay, whereas greater knee flexion contributes to braking on the hard court.  相似文献   

19.
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n?=?8) performed 5–7 sets of 3 s maximum isometric leg press exercise, with 4?min recovery, with knee angle at 85°?±?2° (longer muscle-tendon unit length; L-MTU). The other group (n?=?7) performed the same isometric training at a knee angle of 145°?±?2° (180°?=?full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22–58%, p?p?p?=?0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p?=?0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4%?±?8.3% and 7.8%?±?4.7% (p?相似文献   

20.
This study sought to identify biomechanical factors that determine fast and skilful execution of the seoi-nage (shoulder throw) technique by comparing kinematics between elite and college judo athletes. Three-dimensional motion data were captured using a VICON-MX system with 18 cameras operating at 250 Hz as three male elite and seven male college judo athletes performed seoi-nage. No significant difference was found in motion phase time of the turning phase between the two groups, indicating that motion phase time is not necessarily a factor contributing quickness in seoi-nage. The maximum relative velocity of the whole body centre of mass along the anterior–posterior direction was significantly greater in the elite athletes (2.74 ± 0.33 m/s) than in the college athletes (1.62 ± 0.47 m/s) during the turning phase (p = 0.023). The overall angular velocity of the body part lines, particularly the arm line, tended to be greater in the elite athletes (p = 0.068). The results imply that the velocity of the thrower relative to the opponent in the forward drive and turning motion reflects high skill seoi-nage. Coaches should recognise the relative forward velocity as a factor that may contribute to a successful seoi-nage when teaching the judo throw technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号