首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
由公式C_n~k C_n~(k 1)=C_(n 1)~(k 1),可得:C_2~2 C_3~2 … C_n~2=C_(n 1)~3,sum from k=2 to nC_k~2=C_(n 1)~3,  相似文献   

2.
公式C_(n+1)~m=C_n~m+C_n~(m-1)的一个应用利用组合数性质公式C_(n+1)~m=C_n~m+C=_n~(m-1)可以求形如{n(n+1)…(n+k-1)}的数列的前n项和S_n。 [例1] 求和 S=1·2·3+2·3·4+…+n(n+1)(n+2) 解:1/3!S=1·2·3/3!+2·3·4·/3!…+n(n+1)(n+2)/3! =C_3~3+C_4~3+…+C_(n+2)~3=(C_4~4+C_4~3)+C_5~3+…+C_(n+2)~3 =(C_5~4+C_5~3)+C_6~3+…+C_(n+2)~3=…=C_(n+2)~4+C_(n+2)~3 =C_(n+3)~4=n(n+1)(n+2)(n+3)/4!,  相似文献   

3.
在学习过程中,我们遇到求形如(1+2x+3x~2)~5的展开的项数问题,通过分析,我们猜测如下命题。我用已学过的组合性质C_(n+1)~m=C_n~(m-1)+C_n~m及二项式定理证明了这一命题。命题:(sum from i=1 to m a_i)~n(n≥1,m≥1)的展开项数为C_(m+n-1)~n项。证明:我们对自然数m用数学归纳法。①、当m=1、2时,对一切自然数n命题显然成立。②、假设m=k时,对一切自然数n命题成立。当m=k+1时, 据归纳假设,上式右端展开后,其项数分别为:C_k~0项,C_k~1项,C_(k+1)~2项,C_(k+2)~3项,…,C_(k+n-1)~n项。又由于上式右端a_(k+1)的方次不同,它们之间不可能再合并同类项。故有 (sum from i=1 to k+1 a_i)~n展开项数=C_k~0+C_k~1+C_(k+1)~2+C_(k+2)~3  相似文献   

4.
[例1] 走上10级的阶梯,每步可一级或两级,问有多少种不同的走法? 解法1 按每种走法中一步上两级的步数k(k=0,1,2,3,4,5)分成6类,走上10级阶梯的步数是10-k,这一类的走法数是C_(10-k)~k。由加法原理,不同走法总数为 N=C_10~0+C_9~1+C_8~2+C_7~2+C_6~4+C_5~5=89。下面是递推法。解法2 设走上n级阶梯的走法有a_n种,易知a_1=1,a_2=2,当n>2时,若第一步上一级则有a_(n-1)种走法,第一步上两级则有a_(n-2)种走法,故a_n=a_(n-1)+a_(n-2)(n≥3)。于是当阶梯级数n=1,2,…,10时,走法数依次是 1,2,3,5,8,13,21,34,55,89。即a_(10)=89。注意到解法2中的数列{a_n}就是菲波那奇数列,它的通项公式为  相似文献   

5.
设k是给定的自然效,将前n个自然数的k次方幂和记为S_n~(k)=1~k+2~k+…+n~k.我们知道,组合数C_(n+k)~(k+1)=1/((k+1)!)-·(n+k)(n+k-1)…(n+1)n是n的k+1次多项式,而S_n~(k)可以表为变量n的不含常  相似文献   

6.
我们知道,有这样两个组合公式: C_n~m=C_(n-1)~m+C_(n-1)~(m-1); C_r~r=C_(r+1)~r+C_(r+2)~r+…+C_(r+n+1)~r =C_(r+n)~(r+1)现在,我们来考虑组成这两个公式的各个组合数的倒数是否也能组成相应的公式?下面我们分别来讨这两个问题。定理1 设m,n为自然数,且m≥2,m≤n,则  相似文献   

7.
本文中,我们把Mitrinovi■-Djokovi■不等式推广成:若x_k>0(k=1,…,n),x_1+…+x_n=s≤n-2+2(2+5~(1/2))~(1/2),且a>0,则sum from k=1 to n (x_k+1/x_k)~a≥n(s/n+n/s)~a.  相似文献   

8.
第一天 (1993年1月7日8:00-12:30) 一、设n是奇数,试证存在2n个整数 a_1,a_2,…,a_n,b_1,b_2,…,b_n,使得对任意一个整数k,00,在下列条件下, k_1+k_2+…+k_r=k,k_i∈N,1≤r≤k.求a~k_1+a~k_2+…+a_r~k的最大值. 三、设圆k和k_1同心,它们的半径分别为R和R_1,R_1>R.四边形ABCD内接于圆k,四边形A_1B_1C_1D_1内接于圆k_1.点A_1,B_1,C_1,D_1分别在射线CD,DA,AB,BC上.求证  相似文献   

9.
本文给出第2类Stirling数,Bernoulli数与Euler数的解析表示式: s_2(m+1,n)=(-1)~n/n1 sum form j=1 to n(-1)~j(?)_j~(-m+1) B_n=sum form k=1 to n 1/(k+1) sum form j=1 to k (-1)~j(?)_j~(-n) E_(2n) =1/(2n+1)[sum from p=0 to n-1 sum from k=1 to 2(n-p) sum from j=1 to k (-1)~(j-1)/(k+1)·(?)(?)(4j)~2(n-p)+4n+1]因此解决了它们的计算问题。  相似文献   

10.
一、根据条件直接猜想例1已知数列{an}中的各项分别为182××132,…,8n(2n-1)2(2n+1)2,…,Sn是数列的前n项和,计算可得S1=98,S2=2254,S3=4489,S4=8810.根据结果猜测Sn的表达式,并用数学归纳法证明.解由S1=1-19,S2=1-215,S3=1-419,S4=1-811,猜想Sn=1-(2n1+1)2(n缀N+).证明如下:(1)当n=1时,S1=1-312=89,等式成立.(2)设当n=k(k≥1,k缀N)时,Sk=1-(2k1+1)2成立.∵an=(2n-1)82(n2n+1)2=(2n1-1)2-(2n1+1)2,∴Sk+1=Sk+ak+1=1-(2k1+1)2+(2k1+1)2-(2k1+3)2=1-[2(k+11)+1]2.由此可知,当n=k+1时,等式也成立.根据(1)、(2)可知,等式对任何n缀N+都…  相似文献   

11.
习题是数学的心脏,数学课本习题是数学教材的重要组成部分。刻意探讨习题在解题中的应用,能帮助学生学会课本知识,又为指导学生提高解题能力开辟了一条有效的途径。高中代数(甲种本)第三册P.83,18(2)求证:C_(n-1)~m C_(n-2)~m … C_(m-1)~m C_m~m =C_n~(m 1) 这道习题的结论可来巧妙地解一些数列求和题。例1 求下列数列的和: (1)1 2 3 4 … n; (2)1·2 2·3 3·4 … n(n 1); (3)sum from k=1 to n k(k 1)(k 2)(k 3)…(k p-1)。解:(1)1 2 3 4 … n。  相似文献   

12.
本文对三角函数有限和式sum from k=1 to n(sec~m)(2k)/(2n+1)π进行了化简计算,得到了结果sum from k=1 to n(sec~m)(2k)/(2n+1)π=2~(m-1)(2n+1)A_1_0(m,n)-2~(m-1)(n+1)~m其中m≥2,41_0≡-m(mod2n+1),A_1_0(m,n)是与m,n有关的式子。为简便起见,本文中将使用如下记号:  相似文献   

13.
本文给出几种特殊数列的求和公式: 1、等差数列各项K次幂的和的递推公式。 2、等差数列与等比数列相应项之积的和的公式。 3、设(a_n)为等差数,公差为d,则 (1)sum from i=1 to n (a_ia_(i+k)…a_(1+k-1))=a_1a_2…a_k+(a_na_(n+1)…a_(n+k)-a_1a_2…a_(k+1))╱(k+1)d (2)sum from i=1 to n (1╱a_1a_2…a_(i+k-1))=1╱((k-1)d)(1╱a_1a_2…q_(n-1))-1╱(a_(n+1)a_(n+2)…a_(n+k=1))  相似文献   

14.
试题第一天(上午8:00—12:30) 一.设a_1,a_2,…,a_n是给定的不全为0的实数,r_1,r_2,…,r~n是实数,如果不等式sum from k=1 to n[r_k(x_k-a_k)]≤(sum from k=1 to n(x_k~2))~(1/2)-(sum from k=1 to n(a_k~2))~(1/2)对任何实数x_1,x_2,…,x_n成立,求r_1,r_2,…,r_n的值。二.设C_1,C_2是同心圆,C_2的半径是C_1的半径的2倍。四边形A_1A_2A_3A_4内接于C_1,将A_4A_1延长交圆C_2于B_1,A_1A_2延长交圆C_2于B_2,A_2A_3延长交圆C_2于B_3,A_3A_4延长交圆C_2于B_4。试证:四边形B_1B_2B_3B_4周长≥2×四边形A_1A_2A_3A_4的周长;并确  相似文献   

15.
熟练地掌握基础知识和基本技能,是学好数学的必要条件。从上面例子中可看出“双基”的重要性。例用数学归纳法证明,对任意的自然数 n,(3+5~(1/2))~(n)+(3-5~(1/2))~(n)能被2整除。证法一:当 n=1时,(3+5~(1/2))~(n)+(3-5~(1/2))~(n)=6,能被2整除。设 n=k 时,(3+5~(1/2))~(k)+(3-5~(1/2))~(k)能被2整除;当 n=k+1 时,(3+5~(1/2))~(k+1)+(3-5~(1/2))~(k+1)=(3+5~(1/2))~(k+1)+(3+5~(1/2))(3-5~(1/2))~k+(3-5~(1/2))~(k+1)-(3+5~(1/2))(3-5~(1/2))~k=(3+5~(1/2))[(3+5~(1/2))~(k)+(3-5~(1/2))~k]+(3-5~(1/2))~k(3-5~(1/2)-3-5~(1/2))∵(3+5~(1/2))~(k)+(3-5~(1/2))~(k)能被2整除,且  相似文献   

16.
如何计算sum from t=1 to n multiply from j=i to i+r-1 j(r∈N)的值(表达式)方法多种多样,但一般都比较繁琐。联想到高级中学《代数》第三册P82习题18_((2))的组合数恒等式,可得: C_r~r+C_(r+1)~r+C_(r+2)~r+…+C_(2+r-1)~r=C_(2+r)~(r+1) 将此式展开后两端乘以r_1,即可得:  相似文献   

17.
数学归纳法是数学中证明与自然数有关的命题时和常用的重要证明方法,它是以归纳公理或最小数原理为理论依据的。其基本步骤是: 1~0归纳奠基:如证P(n_0)或P(n_0),P(n_0+1),……P(n_0+t)为真(n_0,t∈N)。 2~0归纳假设:如假设n=k(k≥n_0)或n=k,k—1,…k—t 时P(n)为真(k≥n_0+t)。 3~0归纳推理:根据2~0的归纳假设推出P(n)对n=k+1时也成立。 4~0归纳结论:通过上述三步骤(实质上只两步),依据归纳公理或最小数原理等有关原理推知  相似文献   

18.
用数学归纳法证明不等式,特别是数列不等式,是一个行之有效的方法,也是中等数学中的一个基本方法,近些年高考试题中多次出现这类考题.运用这种方法证明不等式时,往往很多同学在证k到(k+1)的过程中卡了壳,断了思路,这是一种普遍现象.下面分析一下思路受阻的几种原因及转化策略.一、从k到(k+1)添项不足在从k到(k+1)的证明过程中,如果分析不透命题结构,就会造成添项不足,证明夭折.【例1】已知Sn=1+21+13+…+1n(n∈N*),用数学归纳法证明S2n>1+2n(n≥2,n∈N*).思路受阻过程:(1)当n=2时,S22=1+21+31+41=1+1123>1+22,命题成立.(2)设n=k(k≥3)时不等式成立,即S2k=1+21+31+…+21k>1+2k,则当n=k+1时S2k+1=1+12+31+…+21k+2k1+1>1+2k+2k1+1,要证明S2k+1>1+k2+1,只须证1+2k+21k+1>1+k2+1,即证2k1+1>21.显然,当k≥2时这是不可能的,解题思路受到阻碍.受阻原因分析:∵Sn=1+21+31+…+1n,∴S2k+1=1+21+13+…+21k+2k1+1+2k1+2+…+...  相似文献   

19.
1985年全国高中联赛有一道求不定方程整数解的竞赛题,原题如下: 方程2x_1+x_2+x_3+…+x_(10)=3共有多少组不同的非负整数解? 此题难度不大,但其一般化以后的结论却是很有意思的,下面先证明两个关于不定方程整数解的命题。命题1 不定方程 x_1+x_2+…+x_m=n (n≥m)共有C_(n-1)~(m-1)=1组不同的正整数解。 (证明请参看苏淳编写的“同中学生谈排列组合”一书。) 命题2 不定方程 x_1+x_2+…+x_m=n(n≥0)共有C_(n+m-1)~(m-1)组不同的非负整数解。  相似文献   

20.
极限与导数     
课时一 数列归纳法 基础篇 诊断练习一、选择题1.用数学归纳法证明 1n +1+1n +2 +… +12 n>132 4 时由 k到 k +1,不等式左端变化是 (   )( A)增加 12 ( k +1) 一项 .( B)增加 12 k +1和 12 k +2 二项 .( C)增加 12 k +1和 12 k +2 二项且减少 1k +1项 .( D)以上结论均错 .2 .用数学归纳法证明 1+12 +13+… +12 n - 11) ,第一步是证明不等式 (   )( A) 1<2成立 .  ( B) 1+12 <2成立 .( C) 1+12 +13<2成立 .( D) 1+12 +13+14 <2成立 .3.若命题 p( n)对 n =k成立 ,可以推出它对 n =k+2也成立 ,又若 p( n)对 n =2成立 ,则 (…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号