首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于传统滤波器的特点,以现场可编程门阵列(FPGA)和单片机为控制核心,设计了一种新型自适应低通滤波器,实现了信号的程控放大和程控滤波功能。其中程控放大模块由仪表放大器AD620和可变增益放大器VCA810组成,最大增益60 dB,线性可调,程控滤波模块由MAX297低通滤波器和FPGA组成,利用FPGA完成信号中心频率的测量和滤波器截止频率控制信号的产生,利用MAX297实现信号的低通滤波。结果表明,对于频率变化0.1 Hz~50 kHz的输入信号,增益误差小于2%,截止频率控制信号频率误差小于1%,截止频率误差小于1.5%。  相似文献   

2.
设计了基于低噪声高增益发大技术、锁相放大技术和高速高精度采集技术相结合的微弱信号检测系统,该系统采用ARM和FPGA为控制核心,由程控放大模块对待测信号进行宽带滤波和高增益放大,通过双锁相放大器将信号分解成2个正交分量,由24位模数转换器进行高速率采集,实现微弱信号的高精度检测,并通过网口与上位机实时通信和波形显示。测试表明,该系统可将被测信号放大10~8×10~6倍,输入短路噪声低至2nV·Hz~(-1/2),最大可调带宽为10kHz,时间常数3~30 ms,采样速率为52.734kHz,成功检测到239.60nV随时间衰减的核磁共振信号,可用于电子类专业本科实验教学。  相似文献   

3.
程控滤波器   总被引:1,自引:0,他引:1  
本程控滤波器采用AD603小信号放大器、C8051060单片机和可编程滤波器芯片MAX262进行设计。AD603是一个低噪、90MHz带宽增益可调的集成运放芯片,具有程控增益调整功能,为了提高AD603的放大精度,精确控制放大倍数,在设计时使用电压跟随器来提高其输入阻抗,并采用可编程滤波器芯片MAX262可以对输入信号进行二阶低通、高通、带通、带阻以及全通滤波处理,滤波器的中心频率在15kHz~50kHz频率范围内实现64级程控调节,其Q值在0.5~64范围实现128级程控调节。  相似文献   

4.
本文介绍了一个基于低频小信号检测应用的CMOS放大器的设计.设计基于中芯国际(SMIC)0.18μm CMOS工艺,使用Cadence Spectre进行仿真,结果表明该放大器在3.3V工作电压下实现开环直流增益95dB,单位增益带宽40MHZ,相位裕度67^0,100kHz工作频率时噪声系数17dB,总谐波失真(THD)-92 dB,功耗为4mW.  相似文献   

5.
为了对传感器产生的微弱信号同时进行选频滤波和大增益放大,研制了一种带选频滤波功能的程控高增益音频放大器.该系统主要包括控制中心(单片机12LE5A60S2)、放大器模块(VCA810和两级固定放大)和选频滤波模块(LTC1068和FPGA).测试结果表明:该系统的增益在80 dB~120 dB范围内可按1 dB步长调整,选频带通滤波器的中心频率在200Hz~3.1 KHz范围内可按1Hz步进,且通频带宽度不大于100Hz.  相似文献   

6.
为解决小信号易受干扰、难以实现线性放大的问题,以MSP430F247单片机为控制核心,采用压控可变增益宽带放大器VCA820作为程控增益放大器,设计了一个低噪声宽直流放大器.系统能对直流到20MHz的信号,实现增益从0dB到80dB范围内以1dB为步进的程控放大,带内增益起伏小于0.5dB,50负载时输出信号峰-峰值高达30V.系统的零点漂移小,工作带宽高,驱动能力强,性能稳定,可广泛应用于传感器网络和通信设备等电路中.  相似文献   

7.
设计了一种低电压、高增益、高矩形系数的多级LC谐振放大器,该放大器由衰减器、LC谐振放大电路和AGC电路组成,其核心为六级参差调谐方式.模块化设计以防止自激的发生,较好地抑制了外部干扰.实测表明,该放大器各项指标均能达到设计要求,具有一定的实用性.  相似文献   

8.
对基于正交调制的频率特性测量系统做了优化设计。基于扫频信号源频率输出范围为100kHz~40 MHz。为提高扫频精度,扫频模式分为全频扫描和分段扫描,频率分辨率有1kHZ和10kHZ两种;为满足不同测量网络需求以及提高测量精度,设计了程控增益放大电路,其增益可调范围为数学34dB~14dB,增益步进值为4dB,使得放大器输出信号幅度满足20mV~5V要求;采用有效消除噪声的方法进一步提高了系统测量精度。改进后的测试系统幅频特性测量误差小于0.5dB,相频特性测量精度优于2°。  相似文献   

9.
测量放大器主要用来实现对微弱电信号的放大,在测控领域有很广泛的用途,对测量放大器的参数测试十分重要。为了实现基于LabVIEW与数据采集卡USB-6221的测量放大器参数测试与验证。以扫频信号源作为测量放大电路的激励源,将其加到电路两端,经测量放大器电路将信号放大,通过DAQ数据采集卡采集放大后的信号并在屏幕上显示,利用LabVIEW程序间接计算电压增益、共模抑制比、阻抗等参数,验证测量放大电路的高电压增益,高共模抑制比,高输入阻抗的特点。仿真实验结果表明,该系统数据采集方便,精确度高。  相似文献   

10.
CMOS工艺的低相位噪声LC VCO设计   总被引:3,自引:0,他引:3  
本文介绍了用0.18μm 6层金属混合信号/射频 CMOS工艺设计的2个 LC谐振压控振荡器及测试结果, 并给出了优化设计的方法和步骤. 第1个振荡器采用混合信号晶体管设计, 振荡频率为2. 64GHz, 相位噪声为-93. 5dBc/Hz@500kHz. 第2个振荡器使用相同的电路结构, 采用射频晶体管设计, 振荡频率为2. 61GHz, 相位噪声为-95.8dBc/Hz@500kHz. 在2V电源下, 它们的功耗是8mW, 最大输出功率分别为-7dBm和-5.4dBm. 2个振荡器均使用片上元件实现, 电路的集成简单可靠.  相似文献   

11.
以MSP430F135单片机作为测量和显示的核心部件,采用两级前置放大电路、功率放大电路、带阻滤波电路、电流转换电路(功率测量电路)等组成一个低频功率放大器电路系统。测试结果表明,该系统能实现信号功率放大功能,具有输出噪声低、工作频带宽(10 Hz~50 kHz)、输出效率较高的特点。  相似文献   

12.
基于0.18μm CMOS工艺,采用共源共栅源极电感负反馈结构,设计了一个针对蓝牙接收机应用的2.4GHz低噪声放大器(LNA)电路.分析了电路的主要性能,包括阻抗匹配、噪声、增益与线性度等,并提出了相应的优化设计方法.仿真结果表明,该放大器具有良好的性能指标,在5.4mW功耗下功率增益为18.4dB,噪声系数为1.935dB,1dB压缩点为-14dBm.  相似文献   

13.
设计了一种电平移位CMOS轨对轨(Rail—to—Rail)运算放大器,并采用旺宏电子股份有限公司的0.5μmN阱CMOS工艺进行了版图设计。Hspice仿真显示:运放的电源电压为土1.5V,输出可以达到全摆幅,输入失调电压仅为35μV,差模增益达85dB以上,其中82dB的带宽为8K。  相似文献   

14.
介绍了一种应用于下一代移动通信系统的高性能宽带射频收发信机的实现.本射频收发信机工作在6~6.3GHz频段,信道带宽达到100MHz,工作在时分双工模式并支持IMT-advanced系统采用的多输入多输出(MIMO)技术.为了获得最佳的性能,采用了经典的超外差结构.详细介绍了系统关键部件如低噪声放大器、功率放大器以及本地振荡器的设计问题.测试结果表明,射频收发信机的最大线性输出功率大于23dBm,低噪声放大器的增益和噪声系数分别为大约24dB和小于1dB.此外,误差矢量幅度(EVM)的测试结果表明实现的射频收发信机的性能远超过LTE-advanced系统的要求.采用最大8×8的MIMO配置,本射频收发信机在现场试验中支持超过1Gbit/s的数据传输率.  相似文献   

15.
A 0.18 μm CMOS low noise amplifier(LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching and reduce power consumption. The core size of the proposed CMOS LNA circuit without inductor was only 128 μm 9226 μm. The measured power gain and noise figure of the proposed LNA were 20.6 and 1.9 dB,respectively. The 3-dB bandwidth covers frequency from 0.1 to 1.2 GHz. When the chip was operated at a supply voltage of 1.8 V, it consumed 25.69 mW. The high performance of the proposed LNA makes it suitable for multistandard low-cost receiver front-ends within the above frequency range.  相似文献   

16.
采用0.25μm GaAs PHEMT工艺研制了一个X波段单片有源上变频器。电路集成了Gilbert混频电路、RF补偿放大器和LO缓冲器,在提高了单片电路集成度的同时,获得了较好的性能指标。实际测试结果表明:变频增益大于10dB;各端口匹配良好,在工作频带内回波损耗小于10dB;1dB增益压缩点输出功率达到4dBm;所需本振功率为-3dBm。  相似文献   

17.
论述了基于AT89C51单片机的低频功率放大器的设计与实现。采用电压放大电路、功率放大电路和稳压电源电路构成功率放大器的主体,配以高精度采样电阻及12位A/D转换器,实现了通频带30Hz~50kHz范围内的低频放大,保证了失真度小于1.2%,具有较高的精度与稳定性。实验结果表明电路功能和性能指标均已达到设计要求。  相似文献   

18.
作为低中频接收机关键模块之一,多相滤波器在镜像抑制和邻道干扰方面扮演着重要的角色.它的性能指标直接影响整个接收链路的灵敏度.本文采用有源RC电路架构设计了一个五阶切比雪夫多相滤波器.仿真结果表明,该滤波器的中心频率在100kHz,3dB带宽是220kHz.最大电压增益为63dB,镜像抑制比大于30dB.设计的滤波器完全满足GSM手持设备的要求.  相似文献   

19.
A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissipation of traditional multi-stage switched capacitor DPGA.The circuit is designed and simulated using 1P6M 0.18 μm 1.8 V/3.3 V process.Simulation results indicate that the proposed CDS scheme can achieve an FPN of less than 1 mV.The total sampling capacitor per column is 0.9 pF and no column-wise power is dissipated.The die area and FPN value are cut by 70% and 41% respectively compared with amplifier-based CDS.The op-amp sharing gain stage can achieve a 12-bit precision and also implement an 8-bit gain controlling within a gain range of 24 dB.Its power consumption is 1.4 mW,which is reduced by 57% compared with traditional schemes.The proposed readout circuit is suitable for the application of low power cost-sensitive imaging systems.  相似文献   

20.
市场上销售的高品质功率放大器虽然品质很好,但电路复杂、价格昂贵,不易被消费者接受。自制的功率放大器价格便宜,不仅在0.4kHz-20kHz频率范围内放大倍数(Av)基本保持不变,而且在低频端(0.01kHz-0.4kHz)放大倍数提升,补偿了扬声器低频段的低响度,音质更佳。其性能稳定,基本上达到了高保真的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号