首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
颜学华 《中学理科》2004,(10):41-41
现行高二 (上 )《数学》课本 (试验修订本必修 ) (人教版 ,2 0 0 0年第 2版 )第 1 0页例 1给出 :定理 1 已知x ,y都是正数 ,1 )如果积xy是定值P ,那么当且仅当x =y时 ,和x y有最小值 2p ;2 )如果和x y是定值S ,那么当且仅当x =y时 ,积xy有最大值 14 S2 .实际上 ,可把此最值定理推广为以下适用结论 .定理 2 设x ,y>01 )若xy =定值P ,则当且仅当 |x -y|取最小值时 ,x y取最小值 ;|x-y|取最大值时 ,x y最大值 ;2 )若x y=定值S ,则当且仅当 |x -y|取最小值时 ,xy取最大值 ;|x-y|取最大值时 ,xy取最小值 .证明 :1 )由x y =|x -y| 2 4…  相似文献   

2.
<正>在求两个正数和的最大值、积的最小值时,常常要利用定理解题。定理1:已知x,y是正数,x+y=S,xy=P。(1)如果P是定值,那么当且仅当x=y时,S有最小值2P(1/2);(2)如果S是定值,那么当且仅当x=y时,P有最大值S(1/2);(2)如果S是定值,那么当且仅当x=y时,P有最大值S2/4。然而,当x=y不可能成立时,在一定条件下,两个非负实数的和、积仍然有最大值和最小值。  相似文献   

3.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

4.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

5.
我们知道,两个正数的积为定值,当且仅当这两个正数相等时,它们的和有最小值,在“均值”定理中积为定值的条件容易看出,但如果忽视了取“等号”的条件,往往造成错解”,例如:在求 y=(x~2 5)/((x~2 4)~(1/2))的最小值时,y  相似文献   

6.
1.均值不等式 均值不等式a+b≥2√ab(a、b〉0)指出:若两正数和为定值,那么当且仅当两正数相等时,乘积取最大值.换言之,若两正数和为定值,当两正数之差为零时,它们的乘积最大.由此得到,若把一个正整数拆分成两个正整数之和,那么这两个整数之差越小(大的减小的),它们的乘积越大.如x、y是非负整数,z+y=c,x—y=d(x≥y),xy=c+d/2·c-d/2=1/4(c^2-d^2).  相似文献   

7.
最值定理是指:设x,y都为正数,则有①若x+Y=S(和为定值),则当且仅当x=y时,积xy取得最大值等;②若xy=P(积为定值),则当且仅当x:y时,和x+y取得最小值2√P.  相似文献   

8.
根据数学中两个正数的算术平均值总是大于等于其几何平均值即. 可以得出两个极为重要的结论: 1.定和求积原理: 若x1+x2=k是定值,则当x1=x2=k/2时,其积最大,为(x1,x2)max=(k/2)2.  相似文献   

9.
题:已知x,y>0,x y=S,xy=p,求证(1)如果p是定值,那么当且仅当x=y时S取最小值;p~(1/2);(2)若S是定值,那么当且仅当x=y时p取最大值S~2/4(见高中代数第二册)。利用此例求函数的最值时,必须满足x=y这个条件。本文推广上题的结论以应用于x=y不能成立时的函数最值问题。  相似文献   

10.
高二新教材(试验本)第10页例1给出: 定理1已知x、y都是正数,那么: (1)如果积xy是定值P,那么当x=y时,和x+y有最小值2√P; (2)如果和x+y是定值S,那么当x=y时,积xy有最大值1/4S2.  相似文献   

11.
已知x、y都是正数,x y=S,xy=P。 (1)如果S是定值,那么当x=y时,P的值最大; (2)如果P是定值,那么当x=y时,S的值最小。 这是众所周知的极值定理。能否对它给以几何解释呢?回答是肯定的。  相似文献   

12.
在各地中考试题中,出现了两类应用一次函数解经济型应用题,现归纳如下: 一、建立一个一次函数模型在一次函数y=kx+b(k≠0)中,设x取x1、x2时,y的对应值分别是y1,y2,当x1≤x≤x2时,函数图象是线段,函数有最值:(Ⅰ)若k>0,y随x的增大而增大,如图1,当x=x1时,y最小值=y1;当x=x2时,y最大值=y2.(Ⅱ)若k<0,y随x增大而减小,如图2.当x=x1时,y最大值=y1;当x=x2时,y最小值=y2.  相似文献   

13.
【定理】如果a,b是正数,那么a+b/2≥√ab(当且仅当a=b时取“=”号). 定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.  相似文献   

14.
重视变式训练 激活思维能力--一类不等式问题的统一解法   总被引:1,自引:0,他引:1  
1 问题的出现已知x、y∈(0 ,+∞) ,且x+2 y=1,求1x +1y的最小值.学生甲:∵x >0 ,y>0x +1x ≥2 ,2 y+1y ≥2 2 ,∴x+2 y+1x +1y ≥2 +2 2 .∵x +2 y=1,∴1x +1y ≥1+2 2故1x +1y 的最小值为1+2 2 .学生乙:∵x >0 ,y>01=x+2 y≥2 x·2 y,∴xy≤18.因此 1x +1y ≥2 1xy ≥2 8=4 2 .故1x +1y 的最小值为4 2 .以上是学生解这道题目时的两种典型错解,错误的根源在于多次使用了均值不等式,而等号不能同时取到.2 问题的解决本题的条件是正数x、y的一次齐次式等于常数,即x+2 y=1,要求最小值的式子的分母是关于x和y的一次多项式,如果能把1x +1y 化…  相似文献   

15.
题 已知0&;lt;x&;lt;1,a、b都为正数或都为负数,则y=a^2/x+b^2/1-x的最小值为( )  相似文献   

16.
定理若x,y,z是正数,λ是非负实数,那末: x~λ(x-y)(x-z) y~λ(y-x)(y-z) z~λ(z-x)(z-u)≥0式中等号当且仅当x=y=z时成立。证明当x,y,z中若有两个量相等,定理显然成立。若x,y,z两两不等,假设0相似文献   

17.
本文先给出两个代数重要极值定理,分别用初等和高等两种方法进行证明,引出一个推论,最后举例阐明它们的重要应用。 [定理一]若两正变量之和一定,则当二者相等时,其乘积为最大。 证法一:设x>0且y>0 且x y=m (定值)则有s=x·y=x(m-x)=-x~2 mx=-(x-m/2)~2 m~2/4当x=m/2时,同时有y=m/2,故乘积s=x·y有最大值m~2/4, 证法=:用拉格朗日入乘数法,即命题转化为乘积函数s=xy在满足联系方程x y=m的条件极大值问题。于是先构造辅助函数  相似文献   

18.
高中数学教学中,常遇到恒成立问题,在解决这类问题时,学生经常将恒成立与所有数成立、成立等问题相混淆,忽视恒成立的条件,误用等价转化,从而出现各种各样的问题.将“恒成立”与“所有数成立”等同函数y=f(x)恒为正,即要求y为正数,而并非为所有正数;函数y=f(x)为所有正数,要求y取遍所有正数.将两者混淆,易导致错误.例1:若函数y=loga(x2+mx-m)(a>0且a≠1)的值域为R,求实数m的取值范围.误解:要使y=loga(x2+mx-m()a>0且a≠1)的值域为R,只要使u=x2+mx-m恒为正即可.∴△=m2+4m<0#-4相似文献   

19.
一般地说 ,一次函数y =kx +b不存在最大值或最小值 .但是 ,当给出了自变量x的取值范围这一特殊条件后 ,函数值y就可能有最值 .例如 ,一次函数y =kx+b ,x1≤x≤x2 .若k >0 ,如图 1 ,则y值随x的增大而增大 ,当x =x1时 ,y有最小值y1,当x =x2 时 ,y有最大值y2 ;若k <0 ,如图 2 ,则y值随x的增大而减小 ,当x =x1时 ,y有最大值y1,当x =x2 时 ,y有最小值y2 .图 1图 2例 1 已知关于x的方程x2 - 2x +k =0的实数根x1、x2 ,且y =x3 1+x3 2 .试问 :y是否有最大值或最小值 ?若有 ,试求出其值 ;若没有 ,请说明理由 .( 1 999,天津市中考题 )解 :由根与系数…  相似文献   

20.
本文就函数f(x)=x+k/x(k>0)的图像,性质及其变形和应用进行归纳总结并展开讨论.结论1函数f(x)=x+k/x(k>0)的图象及性质:(1)图象如右图所示:(2)性质:①是奇函数;②在区间(k,+∞)和(?∞,?k)上单调递增,在区间(?k,0),和(0,k)上单调递减;③在x>0时,有最小值2k,在x<0时,有最大值?2k;④存在两条渐近线为直线y=x和x=0.应用1试讨论y=b/a+a/b(ab≠0)的取值情况.解当ab>0时,y≥2;当ab<0时,y≤?2,评述构造函数y=x+1/x,充分利用性质③进行解题.应用2求函数y=x+4/(x?3)(x>3)的最小值.解y=x?3+4/(x?3)+3≥7,当且仅当x=5时等号成立.所以y的最小值为7.评述令…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号