首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present facile strategies for the fabrication of two types of microfluidic devices made of hydrogels using the natural biopolymers, alginate, and gelatin as substrates. The processes presented include the molding-based preparation of hydrogel plates and their chemical bonding. To prepare calcium-alginate hydrogel microdevices, we suppressed the volume shrinkage of the alginate solution during gelation using propylene glycol alginate in the precursor solution along with sodium alginate. In addition, a chemical bonding method was developed using a polyelectrolyte membrane of poly-L-lysine as the electrostatic glue. To prepare gelatin-based microdevices, we used microbial transglutaminase to bond hydrogel plates chemically and to cross-link and stabilize the hydrogel matrix. As an application, mammalian cells (fibroblasts and vascular endothelial cells) were cultivated on the microchannel surface to form three-dimensional capillary-embedding tissue models for biological research and tissue engineering.  相似文献   

2.
Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexity, and are limited to one or two cell types. Here, we present a microfluidic platform capable of laminar patterning of any biotin-labeled peptide using streptavidin-based surface chemistry. The design permits the generation of arbitrary cell patterns from heterogeneous mixtures in microfluidic devices. We demonstrate the robust co-patterning of α-CD24, α-ASGPR-1, and α-Tie2 antibodies for rapid isolation and co-patterning of mixtures of hepatocytes and endothelial cells. In addition to one-step isolation and patterning, our design permits step-wise patterning of multiple cell types and empty spaces to create complex cellular geometries in vitro. In conclusion, we developed a microfluidic device that permits the generation of perfusable tissue-like patterns in microfluidic devices by directly injecting complex cell mixtures such as differentiated stem cells or tissue digests with minimal sample preparation.  相似文献   

3.
This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed.  相似文献   

4.
Producing polymeric or hybrid microfluidic devices operating at high temperatures with reduced or no water evaporation is a challenge for many on-chip applications including polymerase chain reaction (PCR). We study sample evaporation in polymeric and hybrid devices, realized by glass microchannels for avoiding water diffusion toward the elastomer used for chip fabrication. The method dramatically reduces water evaporation in PCR devices that are found to exhibit optimal stability and effective operation under oscillating-flow. This approach maintains the flexibility, ease of fabrication, and low cost of disposable chips, and can be extended to other high-temperature microfluidic biochemical reactors.  相似文献   

5.
We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip’s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches.  相似文献   

6.
In this work, we introduce a method for the soft-lithography-based fabrication of rigid microstructures and a new, simple bonding technique for use as a continuous-flow cell lysis device. While on-chip cell lysis techniques have been reported previously, these techniques generally require a long on-chip residence time, and thus cannot be performed in a rapid, continuous-flow manner. Microstructured microfluidic devices can perform mechanical lysis of cells, enabling continuous-flow lysis; however, rigid silicon-based devices require complex and expensive fabrication of each device, while polydimethylsiloxane (PMDS), the most common material used for soft lithography fabrication, is not rigid and expands under the pressures required, resulting in poor lysis performance. Here, we demonstrate the fabrication of microfluidic microstructures from off-stoichiometry thiol-ene (OSTE) polymer using soft-lithography replica molding combined with a post-assembly cure for easy bonding. With finite element simulations, we show that the rigid microstructures generate an energy dissipation rate of nearly 107, which is sufficient for continuous-flow cell lysis. Correspondingly, with the OSTE device we achieve lysis of highly deformable MDA-MB-231 breast cancer cells at a rate of 85%, while a comparable PDMS device leads to a lysis rate of only 40%.  相似文献   

7.
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.  相似文献   

8.
Li X  Ballerini DR  Shen W 《Biomicrofluidics》2012,6(1):11301-1130113
"Paper-based microfluidics" or "lab on paper," as a burgeoning research field with its beginning in 2007, provides a novel system for fluid handling and fluid analysis for a variety of applications including health diagnostics, environmental monitoring as well as food quality testing. The reasons why paper becomes an attractive substrate for making microfluidic systems include: (1) it is a ubiquitous and extremely cheap cellulosic material; (2) it is compatible with many chemical/biochemical/medical applications; and (3) it transports liquids using capillary forces without the assistance of external forces. By building microfluidic channels on paper, liquid flow is confined within the channels, and therefore, liquid flow can be guided in a controlled manner. A variety of 2D and even 3D microfluidic channels have been created on paper, which are able to transport liquids in the predesigned pathways on paper. At the current stage of its development, paper-based microfluidic system is claimed to be low-cost, easy-to-use, disposable, and equipment-free, and therefore, is a rising technology particularly relevant to improving the healthcare and disease screening in the developing world, especially for those areas with no- or low-infrastructure and limited trained medical and health professionals. The research in paper-based microfluidics is experiencing a period of explosion; most published works have focused on: (1) inventing low-cost and simple fabrication techniques for paper-based microfluidic devices; and (2) exploring new applications of paper-based microfluidics by incorporating efficient detection methods. This paper aims to review both the fabrication techniques and applications of paper-based microfluidics reported to date. This paper also attempts to convey to the readers, from the authors' point of view the current limitations of paper-based microfluidics which require further research, and a few perspective directions this new analytical system may take in its development.  相似文献   

9.
Hydrogels have several excellent characteristics suitable for biomedical use such as softness, biological inertness and solute permeability. Hence, integrating hydrogels into microfluidic devices is a promising approach for providing additional functions such as biocompatibility and porosity, to microfluidic devices. However, the poor mechanical strength of hydrogels has severely limited device design and fabrication. A tetra-poly(ethylene glycol) (tetra-PEG) hydrogel synthesized recently has high mechanical strength and is expected to overcome such a limitation. In this research, we have comprehensively studied the implementation of tetra-PEG gel into microfluidic device technology. First, the fabrication of tetra-PEG gel/PDMS hybrid microchannels was established by developing a simple and robust bonding technique. Second, some fundamental features of tetra-PEG gel/PDMS hybrid microchannels, particularly fluid flow and mass transfer, were studied. Finally, to demonstrate the unique application of tetra-PEG-gel-integrated microfluidic devices, the generation of patterned chemical modulation with the maximum concentration gradient: 10% per 20 μm in a hydrogel was performed. The techniques developed in this study are expected to provide fundamental and beneficial methods of developing various microfluidic devices for life science and biomedical applications.  相似文献   

10.
This paper presents a field-flow method for separating particle populations in a dielectrophoretic (DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method.  相似文献   

11.
Fabrication of microfluidic devices using polydimethylsiloxane   总被引:1,自引:0,他引:1  
Polydimethylsiloxane (PDMS) is nearly ubiquitous in microfluidic devices, being easy to work with, economical, and transparent. A detailed protocol is provided here for using PDMS in the fabrication of microfluidic devices to aid those interested in using the material in their work, with information on the many potential ways the material may be used for novel devices.  相似文献   

12.
This paper reports a two-layered polydimethylsiloxane microfluidic device—Flip channel, capable of forming uniform-sized embryoid bodies (EBs) and performing stem cell differentiation within the same device after flipping the microfluidic channel. The size of EBs can be well controlled by designing the device geometries, and EBs with multiple sizes can be formed within a single device to study EB size-dependent stem cell differentiation. During operation of the device, cells are positioned in the designed positions. As a result, observation and monitoring specific population of cells can be achieved for further analysis. In addition, after flipping the microfluidic channel, stem cell differentiation from the EBs can be performed on an unconfined flat surface that is desired for various differentiation processes. In the experiments, murine embryonic stem cells (ES-D3) are cultured and formed EBs inside the developed device. The size of EBs is well controlled inside the device, and the neural differentiation is performed on the formed EBs after flipping the channel. The EB size-dependent stem cell differentiation is studied using the device to demonstrate its functions. The device provides a useful tool to study stem cell differentiation without complicated device fabrication and tedious cell handling under better-controlled microenvironments.  相似文献   

13.
We report on the feasible fabrication of microfluidic devices for ferroelectric polymers'' synthesis in a rapid and stable fashion. Utilizing micro-mixing and flow-focusing in microchannels, poly(vinylidene fluoride-trifluoroethylene) and copper phthalocyanine are uniformly dispersed in one hydrogel particle, which are then demonstrated to immediate and complete on-chip steady polymerization by moderate ultraviolet treatment. The advantage of our droplet-based microfluidic devices is generating versatile particles from simple spheres to disks or rods, and the lengths of particles can be precisely tuned from 30 to 400 μm through adjusting the flow rates of both disperse and oil phases. In addition, this mixed technique allows for the continuous production of dielectric microparticles with controlled dielectric properties between 10 and 160. Such a microfluidic device offers a flexible platform for multiferroic applications.  相似文献   

14.
Control of the 3D microenvironment for cultured cells is essential for understanding the complex relationships that biomolecular concentration gradients have on cellular growth, regeneration, and differentiation. This paper reports a microfluidic device for delivering gradients of soluble molecules to cells in an open reservoir without exposing the cells to flow. The cells are cultured on a polyester membrane that shields them from the flow that delivers the gradient. A novel "lid" design is implemented which prevents leakage from around the membrane without requiring sealing agents or adhesives. Once layers are molded, device fabrication can be performed within minutes while at room temperature. Surface gradients were characterized with epifluorescence microscopy; image analysis verified that sharp gradients (~33 μm wide) can be reproducibly generated. We show that heterogeneous laminar flow patterns of Orange and Green Cell Tracker (CT) applied beneath the membrane can be localized to cells cultured on the other side; concentration profile scans show the extent of CT diffusion parallel to the membrane's surface to be 10-20 μm. Our device is ideal for conventional cell culture because the cell culture surface is readily accessible to physical manipulation (e.g., micropipette access), the cell culture medium is in direct contact with the incubator atmosphere (i.e., no special protocols for ensuring proper equilibration of gas concentrations are required), and the cells are not subjected to flow-induced shear forces, which are advantageous attributes not commonly found in closed-channel microfluidic designs.  相似文献   

15.
In this paper a method of electrospinning conducting and nonconducting biphasic Janus nanofibers using microfluidic polydimethylsiloxane (PDMS)-based manifolds is described. Key benefits of using microfluidic devices for nanofiber synthesis include rapid prototyping, ease of fabrication, and the ability to spin multiple Janus fibers in parallel through arrays of individual microchannels. Biphasic Janus nanofibers of polyvinylpyrrolidone (PVP)+polypyrrole (PPy)∕PVP nanofibers with an average diameter of 250 nm were successfully fabricated using elastomeric microfluidic devices. Fiber characterization and confirmation of the Janus morphology was subsequently carried out using a combination of scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy.  相似文献   

16.
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes.  相似文献   

17.
Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI.  相似文献   

18.
We report a 3D microfluidic device with 32 detection channels and 64 sheath flow channels and embedded microball lens array for high throughput multicolor fluorescence detection. A throughput of 358 400 cells/s has been accomplished. This device is realized by utilizing solid immersion micro ball lens arrays for high sensitivity and parallel fluorescence detection. High refractive index micro ball lenses (n = 2.1) are embedded underneath PDMS channels close to cell detection zones in channels. This design permits patterning high N.A. micro ball lenses in a compact fashion for parallel fluorescence detection on a small footprint device. This device also utilizes 3D microfluidic fabrication to address fluid routing issues in two-dimensional parallel sheath focusing and allows simultaneous pumping of 32 sample channels and 64 sheath flow channels with only two inlets.  相似文献   

19.
Song W  Psaltis D 《Biomicrofluidics》2011,5(4):44110-4411011
We present a novel image-based method to measure the on-chip microfluidic pressure and flow rate simultaneously by using the integrated optofluidic membrane interferometers (OMIs). The device was constructed with two layers of structured polydimethylsiloxane (PDMS) on a glass substrate by multilayer soft lithography. The OMI consists of a flexible air-gap optical cavity which upon illumination by monochromatic light generates interference patterns that depends on the pressure. These interference patterns were captured with a microscope and analyzed by computer based on a pattern recognition algorithm. Compared with the previous techniques for pressure sensing, this method offers several advantages including low cost, simple fabrication, large dynamic range, and high sensitivity. For pressure sensing, we demonstrate a dynamic range of 0-10 psi with an accuracy of ±2% of full scale. Since multiple OMIs can be integrated into a single chip for detecting pressures at multiple locations simultaneously, we also demonstrated a microfluidic flow sensing by measuring the differential pressure along a channel. Thanks to the simple fabrication that is compatible with normal microfluidics, such OMIs can be easily integrated into other microfluidic systems for in situ fluid monitoring.  相似文献   

20.
Concurrent droplet charging and sorting by electrostatic actuation   总被引:1,自引:0,他引:1  
This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 droplets∕s by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号