首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f′(x),从而构成一个新的函数f′(x),称这个函数f′(x)为函数y=f(x)在开区间内的导函数.f′(x)=y′=lim△x→0△y/△x=lim△x→0f(x+△x)-f(x)/△x.那么函数y=f(x)与其导函数y=f′(x)有何关系?本文将用导函数自身的定义来探讨它们之间的联系并加以应用.……  相似文献   

2.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f^1(x),从而构成一个新的函数f^1(x),称这个函数f^1(x)为函数y=f(x)在开区间内的导函数。  相似文献   

3.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

4.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

5.
解决函数零点存在问题常使用函数零点存在定理:函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.但这个定理的逆命题是不成立的,即函数y=f(x)在开区间(a,b)上有零点,则f(a)f(b)<0不一定成立,所以定理中的条件仅是函数f(x)在(a,b)上有零点的充分条件,而不是充要条件.  相似文献   

6.
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a.b)对称的充要条件是:f(x) f(2a-x)=2b推论:函数y=f(x)的图像关于原点O对称的充要条件是:f(x) f(-x)=0定理2.函数f=f(x)的图像关于直线x=a对称的充要条件是:f(a x)=f(a-x)即f(x)=f(2a-x)推论:函数y=f(x)的图像关于y轴对称的充要条件是:f(x)=f(-x)定理3①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。二、不同函数对称性的探究定理4.函数y=f(x)与y=2b-f...  相似文献   

7.
[1] 文指出,国内一些数学分析或高等数学教科书在二元函数极值存在的充分性定理的证明中,存在着一个类似的错误。本文将给出一个纠正这些错误证明的新证法。为了叙述方便,先将[1]文摘录于下。定理:设函数f(x,y)有稳定点p(a,b),且在点p(a,b)的邻域G内存在二阶连续编导数。设A=f″_(xx)(a,b),B=f″_(xy)(a,b),C=f″_(yy)(a,b),令Δ=B~2-AC,则 1) 若Δ<0,函数f(x,y)在p(a,b)取局部极值。 (ⅰ) 当A>0(或C>0)时,函数f(x,y)在点p(a,b)处有局部极小值。  相似文献   

8.
1导数的概念和几何意义1.1概念如果y=f(x)在开区间I内的每点处都可导,就称该函数在I内可导;在定义区间I内,当x=x0,f(x0)是一个确定的数。这样,当x变化时,f′(x)便是x的一个函数  相似文献   

9.
常用于判别函数图象对称性的命题可归纳如下:命题1 若函数y=f(x)满足f(a x)=f(b-x),则y=f(x)的图象关于直线x=a b2对称.证 在y=f(x)图象上取A(a x0,y0),B(b-x0,y0),则AB中点为(a b2,y0),且对任一x0都成立,由x0任意性可知f(x)的图象关于直线x=a b2对称.推论1 若函数y=f(x)满足f(a ωx)=f(b-ωx),则y=f(ωx)关于x=12ω(a b)对称,即y=f(x)关于x=a b2对称.证 设ωx=t,则f(a t)=f(b-t),从而函数y=f(t)关于t=a b2对称,即y=f(ωx)关于直线x=a b2ω对称,或y=f(x)关于直线x=a b2对称.命题2 函数y=f(x)若满足f(a x)=-f(b-x),则y=f(x)的图象关于…  相似文献   

10.
引言本文只论及一元微分的应用,一共写了十六个方面.本期登载的是用导数研究函数的部分内容. 一函数的增减性定义设函数y=f(x)在区间(a,b)内有定义,x_1、x_2是区间(a,b)内的任意两点,当x_1f(x_2),那么y=f(x)就称为在区间(a,b)内的减函数.  相似文献   

11.
导数是一个很好的工具 ,应用十分广泛 .在导数教学中 ,如果注意以下常见的八种错误 ,并让学生理解产生错误的原因 ,能够帮助他们迅速把握这部分内容 ,提高学习效率 ,为日后导数的综合应用铺平道路 .1 对导数的定义把握不准致错例 1 若 f(x)在x0 处可导 ,则limΔx→ 0f(x0 -Δx) -f(x0 )Δx =(   )(A) -f′(x0 )   (B) f′(x0 )(C)f′( -x0 )   (D) 2f′(x0 )错解 选B评析 这里函数值的增量f(x0 -Δx)-f(x0 )与自变量的增量Δx =x0 -(x0 -Δx)顺序不一致 ,不符合导数的定义 ,因此答案B是错误的 .应为 :原式 =-limΔx→ 0f(x0 -…  相似文献   

12.
导数是新课标下的新增内容.导数的工具性拓展了导数的学习与研究空间,除了应用导数解决函数的单调性、最值外,在求函数的值域、证明不等式、距离等方面都有广泛的应用,在高考复习时要重视.一、应用导数的定义求函数的极限【例1】已知f(x)=lnx,求极限limx→1f(x)-f(1)x-1的值.解:∵f(x)=lnx,f′(x)=1x,∴limx→1f(x)-1x-1=f′(1)=1.点评:导数定义的等价形式为f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limx→x0f(x)-f(x0)x-x0.二、应用导数的工具性求函数的单调区间、最值及值域【例2】求函数f(x)=xcosx-sinx(x≥0)的单调递增区间.解:f′(x)=-xsi…  相似文献   

13.
<正>一般地,使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.因此,函数y=f(x)的零点就是方程f(x)=0的实数根.从图象上看,函数y=f(x)的零点就是它的图象与x轴交点的横坐标.一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.我们经常会遇到函数与方程的有关问题,下面我们看这样几个题目.  相似文献   

14.
设二元函数f(x,y),P_o(x_o,y_o)为定义域D中一个聚点,A是一个确定的实数。若对Aε>0,Eδ>0,当p(x,y)∈v~0(p_o,δ)D时,有|f(x,y)-A|<ε,则称A是f(x,y)在P_o点的(二重)极限。记作lim f(x,y)=A或lim f(x,y)=A.(x,y)→(x_o,y_o) x→x_o y→y_o 例如,讨论xy~2/x~2+y~4在(0,0)点的极限。 设f(x,y)= xy~2/x~2+y~4,令y=0,则f(x,0)=0,(x≠0)即当P(x,y)沿x轴趋于(0,0)点时,f(x,y)→0,  相似文献   

15.
求复合函数的极限,常用其连续性定理。 定理一 若u=g(x)在x_0连续,且u_0=g(x_0);y=f(u)在u_0连续,则复合函数y=f〔g(x)〕在x_0连续。即 lim f〔g(x)〕=f〔g(x_0〕=f〔 lim g(x_0)〕,于是,在f(u)和g(x)都连续的条件下,可利用交换极限号lim和函数号f,求复合函数f〔g(x)〕的极限,如  相似文献   

16.
课本中给出了奇偶函数的定义:f(x)是奇函数f(-x)=-f(x),f(x)是偶函数f(-x)=f(x).它们的图象特征是:奇函数的图象关于原点对称,偶函数的图象关于y轴对称.关于原点(y轴)对称的函数是奇(偶)函数.把以上结论加以推广:就有:命题1:设函数y=f(x)的定义域为R,且满足条件f(a x)=f(b-x),则函数y=f(x)的图象关于直线x=a2 b对称.命题2:定义在R上的函数y=f(x)满足条件f(x a)=-f(b-x),则y=f(x)的图象关于点a2 b,0对称.这两个命题是关于同一个函数图象本身的对称性,对于两个函数图象之间的对称性,有下列结论:命题3:定义在R上的函数y=f(x),函数y=f(a x)与y…  相似文献   

17.
函数单调性是高中阶段函数的一个最基本的性质,导数为我们提供了一套新的理论和方法,只通过简单的求导和解相关的不等式就可以判断出函数的单调性,进而更深入地解决问题,比如最值问题等。那么,怎样用导数解决有关单调性的问题呢?一、导数与函数单调性的关系1.定义设函数y=f(x)在某个区间(a,b)内可导,如果f’(x)>0,那么y=f(x)在这个区间内单调递增;  相似文献   

18.
函数图象是函数的重要组成部分,是认识函数、研究函数、应用函数的工具.下面就函数图象的常见变换作一简单介绍. 一、平移变换1.左右平移:如y=f(x+a),其图象是将y=f(x)的图象向左(a>0)、向右(a< 0)平移|a|个单位得到. 2.上下平移:如y=f(x)+a,其图象是将y=f(x)的图象向上(a>0)、向下(a< 0)平移|a|个单位得到. 二、对称变换1.中心对称:若y=f(x)满足f(x)+f(2a-x)=2b,则y=f(x)的图象关于点  相似文献   

19.
结论1设a、b为常数,则函数y=f(x)的图象与函数y=g(x)的图象关于直线x=a+b/2对称的充要条件是:对任意实数x,都有f(a+x)= g(b-x).证明:(1)充分性:设点P(a+x0,y0)是函数y=f(x)的图象上任意  相似文献   

20.
微分学中,费尔马(Fermat)定理、罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理因为都涉及导数在给定区间内的一个中间值,因此把这些定理叫做微分学中值定理。它们是微分学的理论基础。 费尔马定理 若函数f(x)在点x_0的某邻域U(x_0,δ)内有极值,且在点x_0可导,则f(x_0)=0,它的几何意义是如果曲线y=f(x)在点x_0处具有极值且有切线,则切线必为水平的。由费尔马定理可以导出下面的罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且有f(a)=f(b),则在(a,b)内至少有一点ξ,使f(ξ)=0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号