首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
二次函数y=ax~2 bx c(a≠0)的图象是一条抛物线,将其沿坐标轴平移或以顶点为中心旋转180°后,求其解析式,同学们感到很棘手,原因是不得要领。笔者在实践中摸索出了两种常用技巧。 1.求把抛物线y=ax~2 bx c(a≠0)沿坐标轴平移后的解析式。首先把抛物线的解析式y=ax~2 bx c化成顶点式y=a(x h)~2 k。如果抛物线向左(或向右)平移|m|个单位,则要将h加上(或减去)|m|个单位。可简记为“左加右减”。如果是把抛物线向上(或向下)平移|n|个单位,则是将k加上(或减去)|n|个单位,可简记为“上加下减”。a的值不变。  相似文献   

2.
<正>抛物线y=ax2+bx+c(a≠0,a,b,c都是常数)与抛物线y=ax2(a≠0,a是常数)是全等的图形,其开口方向与开口大小相同,仅仅位置不同.下面解答以原点为位似中心,变换前后抛物线的位似比值是1∶2时的函数解析式问题:y=ax2+bx+c的顶点式是y=a(x-h)2+k则顶点坐标是(h,k),如图1,位似变换y=ax2+bx+c后  相似文献   

3.
1.引例 已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(1,-1),且过点(-1,1),求该抛物线的解析式.  相似文献   

4.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

5.
<正>求二次函数平移和对称后的解析式是中考热点问题.对于二次函数平移,我们熟知,先将抛物线通过配方化成顶点式y=a(xh)2+k(a≠0),再根据平移规律:左加右减,上加下减,可求得其解析式.显然抛物线无论作何种对称变换,其形状没有发生变化,即|a|不变.因此要求抛物线经过对称变换后的解析式,我们可先确定原抛物线的顶点坐标及开口方向,再根据两抛物线顶点对称的规律,来确定二次函数的三个参数a,h,k变化规律;我们还可以根据坐标对称的特征,归纳出二次函数的一般式y=ax2+bx+c(a≠0)对称后的解析式及a,b,c的变化规律.现分类阐释抛物线经不同对称变换后的解析式的变化规律,供大家参考.  相似文献   

6.
苏科版九年级(下)数学教材在讲解二次函数y=ax2+bx+c(a≠0)的性质时,是将二次函数的解析式由简单的y=ax2(a≠0)(顶点在原点)逐渐过渡到y=ax2+c(a≠0)(顶点在y轴)、y=a(x-h)2(a≠0)(顶点在x轴)、y=a(x-h)2+k(a≠0)(顶点式),再到一般式y=ax2+bx+c(a≠0).而前四种形式的二次函数图象之间的联系是通过对应的抛物线的平移来实现的:  相似文献   

7.
求二次函数解析式既是初中数学的重点, 也是中考中的热点,因此,学会并掌握求二次函数解析式的方法是必要的.二次函数的解析式常见的有: 一般式:y=ax2+bx+c(a≠0) 顶点式:y=a(x-h)2+k(a≠0),(h,k) 是抛物线顶点.两根式:y=a(x-x1)(x-x2)(a≠0) x1和x2是抛物线与x轴两个交点的横坐标; 确定二次函数的解析式,实质上是要确定上述式子中的三个常数,因此需要三个独立的已知条件建立三个方程组成方程组,才能求解.下面以中考试题为例,供同学们参考.  相似文献   

8.
求二次函数解析式是《函数及其图象》一章的重点和难点,也是近年中考命题的重要内容.通过求解析式可将函数、数形结合等数学思想融为一体,以提高学生运用一些数学方法解决实际问题的能力.求二次函数解析式的方法,由已知条件而定.一、已知二次函数图象上三点的坐标一般情况下,设它的解析式为y=ax2+bx+c(a≠0)(一般式),将三点坐标代入,解三元一次方程组求出a、b、c即可.例1.已知二次函数的图象经过(3,2),(-1,-1),(1,3)三点,求这个二次函数的解析式.解:(略).二、已知抛物线y=ax2+bx+c(a≠0)的顶点坐标或对称轴一般选用顶点式y=a(x-h)2+k较为简…  相似文献   

9.
初中阶段函数既是重点 ,又是难点。为此 ,要抓住各概念的特点 ,掌握解题技巧。我们知道抛物线 y=ax2 +bx+x(a≠ 0 )具有对称性 ,它的对称轴为 x=- b2 a,在解题中充分利用这一性质 ,可简化运算。一、求解析式例 1.抛物线 y=ax2 +bx+c通过点 A(1,0 )和B(3,2 ) ,且 y的最大值是 2 ,求其解析式。解 :由 y的最大值是 2且图象过 B(3,2 ) ,知点 B是抛物线的顶点 ,对称轴是 x=3。又图象过点 c(1,0 ) ,由抛物线的对称性可知抛物线还过点 (5 ,0 ) ,故可设 y=a(x- 1) (x- 5 ) ,将 (3,2 )代入上式 ,解得 a=- 12 ,即 y=- 12 x2 +3x- 52 。另解 :可知抛…  相似文献   

10.
求二次函数的解析式是“函数”部分的难点.课本中对这个问题没有做深入的讲解,同学们解题时常感困难.本文举例分析二次函数解析式的几种求法,供同学们参考.一、三点型若已知抛物线上三点的坐标,则二次函数的解析式可用一般式y=ax2+bx+c(a≠0)来表示,然后用待定系数法将三点坐标分别代入求解.例1已知一个二次函数的图象经过(-1,-6),(1,-2),(2,3)三点,求这个函数的解析式.解:设二次函数的解析式为y=ax2+bx+c,则有a-b+c=-6,a+b+c=-2,4a+2b+c=3.解这个方程组,得a=1,b=2,c=-5.故所求函数的解析式为y=x2+2x-5.二、顶点型若已知抛物线的顶点坐标或…  相似文献   

11.
数学中一些难度较大的问题多是综合性较强的问题。如何解决这些综合性较强的问题 ,一直是教学的一个难点。本文将对一组例题进行分析 ,提供突破这一难点的一个基本思路。例 1 .已知 :抛物线 y=ax2 +bx+c(a≠ 0 )过点P(1 ,- 2 )、Q(- 1 ,2 )、H(0 ,- 3 ) .求抛物线的解析式。解 :分别将三点坐标代入 ,得a+b+c=- 2 ,a- b+c=2 ,c=- 3 , 解得a=3 ,b=- 2 ,c=- 3。∴抛物线的解析式为 y=3x2 - 2 x- 3。▲规律 :1已知三点坐标 ,可求出解析式 ;2求出解析式 ,抛物线唯一确定。例 2 .已知 :抛物线 y=ax2 +bx+c(a≠ 0 )过点P(1 ,- 2 )、Q(- 1 ,2 )。…  相似文献   

12.
1参数符号的判定(1)系数a符号的判定当抛物线y=ax2+bx+c(a≠0)开口向上时,a>0;开口向下时,a<0.(2)系数b符号的判定若抛物线y=ax2+bx+c(a≠0)的对称轴  相似文献   

13.
二次函数的一般式:y=ax2+bx+c(a≠0) 顶点式:.y=a(x+b/2a)2+4ac-b2/4a=a(x+m)2+k(m=b/2a,k=4ac-b2/4a). 因式分解式:y=ax2+bx+c(x-a)(x  相似文献   

14.
我们知道二次函数y1=ax^2+bx+c(a≠0)的图象与二次函数y2=ax^2(a≠0)的图象的形状,开口方向都相同,只是位置不同,而位置的不同则取决于顶点坐标,所以,求函数y1=ax^2+bx+c(a≠0)的解析式,可由函数y2=ax^2+bx+c(a≠0)的解析式,  相似文献   

15.
(接上期)考点7二次函数的概念、图象及其性质[知识要点]1.函数y=(a,b,c是常数,a≠0)叫做二次函数.当a≠0,b=c=0时,则y=;当a≠0,b=0,c≠0时,则y=;当仅有c=0时,则y=.这些函数都叫做.把二次函数y=ax2+bx+c(a≠0)通过配方写成y=a()2+,由此可知对称轴是,顶点坐标是(,).2.二次函数y=ax2+bx+c(a≠0)的图象是一条;当a>0时,开口向,当x=时,函数有值;当a<0时,开口向,当x=时,函数有值.3.对于二次函数y=ax2+bx+c(a≠0),a确定图象的,c确定图象与y轴的交点坐标是,Δ=b2-4ac确定图象与轴是否相交,当Δ>0时,抛物线与x轴有两个不同交点,当Δ=0时,抛物线与x轴只…  相似文献   

16.
二次函数 y=ax2 bx c(a≠ 0 )的图象及性质在初中代数教材中占有重要地位 ,这部分知识与前后内容联系紧密 ,灵活性、综合性较强。下面着重介绍二次函数 y=ax2 bx c(a≠ 0 )与一元二次方程 ax2 bx c=0 (a≠ 0 )之间的关系。一、一元二次方程 ax2 bx c=0 (a≠ 0 )的根的情况决定着抛物线 y=ax2 bx c(a≠ 0 )与x轴交点的情况。下面是二次函数 y=ax2 bx c(a>0 )的图象 ,观察图象 ,回答 :x取何值时 ,y=0。  (甲 )   (乙 )   (丙 )由 (甲 )图可以看出 ,抛物线y=ax2 bx c与 x轴交于两点(- 1,0 )与 (3,0 ) ,也就是说 ,有…  相似文献   

17.
<正>二次函数y=ax2+bx+c的图象平移时,图象的开口方向和形状都不变,即a不变,变化的只是它的位置.图象的变化规律和顶点的变化规律是一样的,因此,抛物线的平移可以看做是顶点的平移,其规律可以概括为:平移变化在顶点.下面结合抛物线平移的几种常见题型予以剖析.一、原抛物线、新抛物线、平移过程中的抛物线,已知任意两个求第三个例1抛物线y=2x2-8x+5向左平移4个单位,再向上平移2个单位,求平移后的解析式.  相似文献   

18.
二次函数y=ax2+bx+c(a≠0)图像的位置形状与解析式中系数a、b、c符号有下列关系. 1.抛物线开口向上时,a>0;在抛物线开口向下时,a<0.  相似文献   

19.
一、抛物线中的"四点"抛物线y=ax2+bx+c(a≠0)的"四点"是指抛物线与x轴的两个A交点,与y的交点及抛物线的顶点(如图).抛物线与x轴的两个交点是A(x1,0),B(x2,0).其中x1、x2是当y=0时,方程ax2+bx+c=0的两根;  相似文献   

20.
二次函数y =ax2 bx c(a≠0 )的顶点式y =a(x b2a) 2 -Δ4a(Δ=b2 -4ac)较为优越,因为顶点式能够体现出二次函数y =ax2 bx c(a≠0 )图象的特征:( 1 )开口方向(由a确定:a >0 ,开口向上;a<0 ,开口向下) ;( 2 )对称轴方程(x b2a=0 ) ;( 3 )顶点位置,即最高点或最低点的位置(点的横坐标x =-b2a,点的纵坐标y =-Δ4a) .由顶点式也能确定出二次函数y =ax2 bx c(a≠0 )的最值(当a >0时有最小值y =-Δ4a;当a <0时有最大值y =-Δ4a) .如果已知二次函数的对称轴,或顶点位置,或最值,采用顶点式y =a(x h) 2 k确定二次函数的解析式较简捷.( 1 )…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号