首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
求异面直线间的距离为高中《立体几何》的难点.有关书刊介绍不少方法.本文旨在利用三角形面积射影给出它的求法。为此,先证明下面的命题: 若异面直线a,b所在平面成θ度的二面角α-l-β,且B‖l间的距离为c,则异面直线a,b间的距离d=csioθ (A) 证明:设a∈α b∈β在b上任取一点P,作PM⊥l,PN⊥α,M、N为垂足连结MN,由三垂线定理的逆定理知MN⊥l  相似文献   

2.
如图1,P为平面α外一点,PO⊥α,O为垂足,直线l(∪)α,点P与直线l确定平面为β,点B∈l,设PB与平面α所成的角∠PBO=θ1,与l所成的角∠PBA=θ,二面角α-l-β的平面角∠PAO=(ψ).下面我们来研究θ1、θ、(ψ)之间的关系.  相似文献   

3.
求二面角的大小,主要方法是利用三垂线定理及其逆定理,要反复涉及线面垂直的性质和判定定理,学生在复杂的图形面前往往会感到无从下手,笔者经过细致的探索总结,在教学中引入“第三者”,即构造第三个平面(相对于二面角的两个半平面而言),再经过作两条垂线,很好地解决了这一问题. 如图1.在二面角α-α-β中,取A∈α,过A作AB⊥β于B,过B 作BC⊥α于C,连结AC,则AC⊥α,故∠ACB是该二面角的平面角,从中可以看出,第  相似文献   

4.
立体几何中求二面角的大小问题是重点和难点内容 ,同学们往往因找不到二面角的平面角或有效避开找二面角的平面角而苦恼 .下面结合典型例题介绍几种常用的解题方法和技巧 .一、定义法依据二面角的平面角的定义 ,只要找到二面角的棱的垂面便可获得二面角的平面角 .图 1例 1 如图 1,二面角α - l-β内一点 P,PA⊥α于 A ,PB⊥β于 B,∠ APB =6 0°,求二面角α - l -β的大小 .解 :设 PA与 PB所确定的平面为γ,设γ∩ l =O,连结 AO,BO,设γ∩α=AO,γ∩β =BO.∵ PA⊥α,l α,∴ PA⊥l;同理 :PB⊥ l,∴ l⊥γ.∵γ∩α =AO,γ∩…  相似文献   

5.
一、选择题1·在下列关于直线l1,l2与平面α、β的命题中,真命题的是()(A)若l1β且α⊥β,则l1⊥α.(B)若l1⊥β且α∥β,则l1⊥α.(C)若l1⊥β且α⊥β,则l1∥α.(D)若α∩β=l2,且l1∥l2,则l1∥α.(第2题)2·如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,点D、E分别是棱AB,BB1的中点,则直线DE与BC1所成的角是()(A)45°.(B)60°.(C)90°.(D)120°.3·二面角α-l-β的平面角为120°,A、B∈l,ACα,BDβ,AC⊥l,BD⊥l,若AB=AC=BD=1,则CD等于()(A)2.(B)3.(C)2.(D)5.4·空间四边形ABCD,AC=AD,∠BAC=∠BAD=3π,…  相似文献   

6.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

7.
二面角的平面角是立体几何中的一个重要的概念之一.本文将给出二面角的平面角的极值特征,以加深对这一概念的理解.设P─MN─Q为给定的一个二面角,其平面角为a,在平面P上作AB⊥MN于B,射线BC在平面Q上,∠ABC=0.下面的命题刻划了二面角的平面角的极值特征:命题1)当a<90°时。恒有0>a,当且仅当∠ABC为二面角的平面角时等号成立;2)当a>90°时,恒有0<a,当且仅当∠ABC为二面角的平面角时等号成立;3)当a=90°时,0=α=90°恒成立.证作AD⊥平面Q,垂足为D联BD,则由三垂线定理知BD⊥MN.又已知α<90°,故∠A…  相似文献   

8.
已知三角形的三条边长可根据海伦公式求其面积,同样已知四面体的六条棱长亦可求其体积,本文给出求体积的一般公式。引理图,α∩β=l,O∈l,a∩b=O,β,a与l所成角为x,b与l所成角为y,a与b所成角为z,则二面角α—l—β的平面角s之余弦有 coss=cscx·cscy·cosz-ctgx·ctgy。证明:如图,在l上取一点C,使OC=1,过C点在a内作CA⊥l,交a于A,过C点在β内作CB⊥l交b于B,则∠ACB就是二面角a—l—β的平面角s。连AB,则  相似文献   

9.
李玉玲 《考试周刊》2012,(34):57-58
在立体几何中,我们经常利用空间向量的方法来求两个平面所成的二面角的大小,即在二面角α-l-β中,设平面α的法向量m,,平面β的法向量n,.〈m,,,n〉=θ,则二面角α-l-β的平面角为θ或π-θ,其中cosθ=cos〈,m,n,〉=,m.,n.  相似文献   

10.
向量与角     
1.推导直线的夹角公式设直线l1:A1x B1y C1=0与l2:A2x B2y C2=0,两直线的夹角为α,两直线方向向量的夹角为θ,则α=θ或α=π-θ.因为两直线的方向向量分别为  相似文献   

11.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

12.
求异面直线间的距离是中学数学教学的一个难点。笔者在教学实践中,用公式h=(absinθ)/(a~2+b~2-2abcosθ)~(1/2)求异面直线间的距离,思路清晰,方法简捷,便于学生掌握。如图1,设异面直线 m、n,A、B∈m,A、n确定平面α,B、n 确定平面 B,α∩β=n.过 B 作 BC∥n,在α内,作 AD⊥n 于 D,在β内作 DC⊥n 于 D,BC∩DC=C,连 AC,  相似文献   

13.
立体几何命题中,求二面角的值是一种常见而且重要的问题。一般的做法是先找出二面角的平面角再计算。本文拟给出一个直接求二面角的公式,并讨论一些相关问题。 定理 设二面角M-AB-N的大小为a,P∈AB,D∈平面N,C∈平面M,∠CPB=θ_1,∠DPB=θ_2,∠CPD=θ,则有 cosθ-cosθ_1cosθ_2 证明:如图1,作AB的垂面,分别交PC、AB、PD于C、E、D.则∠CED=a,∠CEP=∠DEP=90°.设PE=x,从而有PC=xsecθ_1,EC=xtgθ_1,PD=xsecθ_2,DE=xtgθ_2. 在△PCD与△ECD中,分别用余弦定理求CD~2,得整理得 应用此定理便可直接求出二面角的值,请看下面的例子。  相似文献   

14.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

15.
如图1,P为平面α外一点,PO⊥α,O为垂足,直线l<α,点P与直线l确定平面为β,点B∈l,设PB与平面α所成的角∠PBO=θ1,与l所成的角∠PBA=θ,二面角α-l-β的平面角∠PAO=φ.下面我们来研究θ1、θ、φ之间的关系.在Rt△POB中,sinθ1=PPBO.在Rt△POA中,sinφ=PPAO.在Rt△PBA中,sinθ=PPBA.因为PPBO=PPAO·PPBA,所以sinθ1=sinφ·sinθ在上述公式中,因为0相似文献   

16.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

17.
贵刊1997年第11期第22页《两个平面垂直的一个充要条件及其应用》一文中给出的定理有广泛的应用,但具有特殊性.事实上如果对二面角大小不加以限制,可以有下面更一般的结论:定理由大小为γ的二面角α-MN-β的棱上一点P分别在两个面内引射线PR、PS,设,则证明;Ⅰ,当θ1、θ2均为锐角时,在PR上取一点A,作ACMN,垂足为C,过C点在平面β内作CBMN,交PS于B(图1).所以是二面角α-MN-β的平面角,即.1.当θ1、θ2都为直角时,结论显然成立.当θ1、θ2中有一个为直角时,不妨设θ1为直角.①以下证当0。、y均为锐角时,结…  相似文献   

18.
2007年浙江省高考数学卷中有这样一题:题目已知点 O 在二面角α-AB-β的棱上,点 P 在α内,且∠POB=45°.若对于β内异于点 O的任意一点 Q,都有∠POQ≤≥45°,则二面角α-AB-β的大小是____.(2007年浙江省高考数学卷理科第16题、文科第17题)对于此题,有相当多的考生感觉无从下手,答案是瞎蒙的,能力较强的学生会联想到用"最小角定理",得到以下错解.错解设直线 OP 与β所成角为θ.当点 P 在β上的射影 P_1落在射线 OQ 上时,∠POQ=θ,由题设可知θ>45°,即θ≥∠POB.又因为 OBβ,故由最小角定理知,∠POB≥θ,所以∠POB=θ,即 OB 为 OP在β上的射影,从而α⊥β,即二面角α-AB-β的大小是90°.上述解法看似非常漂亮,但仔细审题,发现二面角的面β是半平面,也就是  相似文献   

19.
一、选择题 :本大题共 12小题 ,每小题 5分 ,共 60分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 .1.已知集合M ={-1,1,2 },N ={y|y =x2 ,x∈M },则M∩N是 (   ) .A .{1}  B .{1,4}  C .{1,2 ,4}  D . 2 .已知a、b为直线 ,α、β为平面 ;下列命题中 ,正确的个数是 (   ) .①若a⊥α ,a⊥ β ,则α∥ β ;②若α∥b ,β∥b ,则α∥β;③若a⊥α ,b⊥α ,则a∥b ;④若a∥α ,b∥α ,则a∥b .A .0  B .1  C .2  D .33 .M :α≠4π3 ;N :tgα≠ 3 ;下面的判断中正确的是 (   ) .A .M是N的充分但不必要条件…  相似文献   

20.
利用平面的法向量可以方便地求出二面角平面角的大小,由于两法向量的夹角未必就是二面角的平面角的大小,许多杂志上都介绍了直接从图形上观察两法向量的方向,来确定两法向量的夹角是否为两平面的夹角.这种方法虽然简单,但由于空间任意两个向量都是共面的,要从图形上直接判定他们的方向,需要很强的空间想象能力,好多学生是达不到这种境界的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号