首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 814 毫秒
1.
三角函数中的“三兄弟”   总被引:1,自引:0,他引:1  
下面以三角函数中的 sinx cosx、sinx-cosx和 sinxcosx 三者的联系为例,谈谈对以上观点的认识。定理1,若sinxcosx=t(|t|≤12),则sinx cosx=± 1 2t,sinx-cosx=± 1-2t证明:因为sinx cosx=t,所以sin2x=2t,又|sin2x|≤1,故|t|≤12.设sinx cosx=y,两边平方得1 2sinx cosx=y2,y2=1 2t,y=± 1 2t,即sinx cosx=± 1 2t(正负号由x的范围确定).同理可证sinx-cosx=± 1-2t.定理2,若sinx cosx=t(|t|≤ 2).则sinx cosx=t2-12, sinx-cosx=± 2-t2证明:因为sinx cosx=t,所以 t= 2sin(x π4),得|t|≤ 2.两边平方得1 2sinx cosx=t2,则sinx cosx=t2-1…  相似文献   

2.
三角函数的最值问题,是一个比较复杂的问题,涉及范围广,方法典型独特,解法多种多样,又有很独特的技巧性,是三角函数的重点和难点内容之一.现把在教学中常见的几种类型及解法归纳如下,供参考.1.对于形如y=asinx+b或y=acosx+b(a≠0)的三角函数最值问题,可从中解出sinx或cosx,再利用正弦(或余弦)函数的有界性(|sinx|≤1或|cosx|≤1),便可求出原函数的最小值为b-|a|,最大值为b+|a|.【例1】求函数y=sin(x-π4)·cosx的最小值和最大值.解:∵y=12sin(2x-π4)+sin(-π4)=12sin(2x-π4)-24,∴ymin=-24-12=-2+24,ymax=-24+12=2-24.2.对于形如y=asinωx…  相似文献   

3.
数学问答     
问题53.函数y=sinx cosxsinx cosx的最大值是____.(北京昌平一中王华文)解答:(方法1)设sinx=m n,cosx=m-n,由sin~2x cos~2x=1,得n~2=1/2-m~2(|m|≤2~(1/2)/2),于是有y=m~2  相似文献   

4.
反余切,反余弦函数有如下关系式: arc ctg(-x)=π-arc ctgx,x∈(-∞,+∞) arc cos(-x)=π-arc cosx,x∈[-1,1] 本文以第一个公式为例,利用图象的几何直观性,介绍两种证明方法,可在学生复习时用。∵ y=arc ctgx是y=ctgx (x∈(0,π))的反函数,其图象关于直线y=x对称,而y=ctgx(x∈(0,π))的图象关于点(π/2,0)对称,∴y=arc ctgx的图象关于点(0,π/2)对称。  相似文献   

5.
答读者问     
陈老师: 我阅读了贵刊92年第5期P_(36)例9的解法是不妥的,他的解法如下: “例9 解三角方程5cosx+12sinx=13 解:(cos~2x+sin~2x)(5~2+12~2)≥(5cosx+12sinx)~2=13~2,此时等式成立,当且仅当cosx/5=sinx/12时,即ctgx=5/12。所以原方程的解集为{x|x=kπ+arcctg5/12,k∈Z} 事实上,我们若取k=1,把x=π+arcctg  相似文献   

6.
在高三复习过程中,常用到三角函数的有界性求值域(|sinx|≤1,|cosx|≤1),对含有正弦函数、余弦函数的有理式f(sinx,cosx)就更常见了。一般可归为如下两种形式:(1)y=asinx bcosx,(Ⅱ)y=asinx bcosx/csinx dcosx,对以上两类问题常用的求法为:(1)可化为y=√a^2 b^2sin(x θ)形式即可求得;  相似文献   

7.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

8.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

9.
在很多实际问题中 ,我们要面对各式各样的最值问题 ,利用三角函数的最值 ,如正、余弦函数y=Asinx ,y =Acosx的有界性 ,数学中的均值不等式 ,函数的单调性等知识结合起来 ,常常能使问题化腐朽为神奇 ,在解题的思路、技巧上 ,有章可依、有规可寻 ,使问题得到快速、圆满的解决 现举数例加以说明 :例 1:设f (x) =2sinxcosx 52sinx cosx ,x∈ [0 ,π2 ],(1) ,求f (π12 ) ,(2 )求f (x)的最小值 例 2 :求f (θ) 4sinθcosθ - 1sinθ cosθ 1,θ∈ [0 ,π2 ]的最值 上两例是典型的三角函数最值应用题 ,其思路可能是利用正、余弦函数的有界性 |sinx|≤ 1,|cosx|≤ 1或利用均值不等式、或利用函数的单调性 ,经过适当三角变换 ,使问题得到解决 例 1求解如下 :f (x) =2sinxcosx 52sinx cosx =sin2x 522sin (x π4 ),当x =π12 时 ,f (π12 ) =sin π6 522sin π3=6 注意f (x) =1 2s...  相似文献   

10.
在反三角函数教学中,关于反三角函数的三角运算,除了正确利用反三角函数定义、性质、概念进行,还可以引用公式arcsinx arccosx=π/2(|x|≤1)进行反三角函数的求值、化简、证明恒等、解三角方程等,巧用它来解题,可以使学生牢固地掌握反三角函数有关知识,提高学生对于反三角函数运算速度和能力。现从教学实际中举出数例来说明arcsinx arccosx=π/2(|x|≤1)  相似文献   

11.
<正>问题(2018年高考理科数学全国(Ⅰ)卷第16题)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是______.解法赏析思路1f(x)=2sinx+sin2x,由周期函数不妨设x∈[0,2π],f'(x)=2cosx+2cos2x=2(2cos2x=2(2cos2x+cosx-1)=2(2cosx-1)(cosx+1).  相似文献   

12.
三角函数的最值问题是高考重要知识点和命题热点之一,下面就常见题型加以归纳总结,供同学们学习时参考. 类型1y=asinx+b(a≠0) 这是一类比较简单的函数.当x∈R,ymax=|a|+b,ymin=-|a|+b;当x有限制条件时,可结合正弦函数的图像求得函数的最值.例 1(1995年全国高考题)函数y=sin(x-π/6)cosx的最小值是_.解:y=sin(x-π/6)cosx =1/2[sin(2x-π/6+sin(-π/6)] =1/2sin(2x-π/6)-1/4,当sin(2x-π/6)=-1时,ymin=-3/4.  相似文献   

13.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

14.
求三角函数最值问题中的参数值问题,是三角中的一个重要内容.而在教材或一些读物中其习题甚少,笔者就以自己积累的资料加以整理,供学习参考.一、应用三角函数值域:|sinx|≤1,|cosx|≤1.例1已知x∈[0,π4],函数f(x)=2asin2x-23asinxcosx a b(a<0)的最大值为1,最小值为-5,求a、b的值.解:f(x)=a(1-cos2x)-3asin2x a b=-a(3sin2x cos2x) 2a b=-2asin(2x 6π) 2a b.因为x∈[0,4π]2x 6π∈[π6,23π],所以sin(2x π6)∈[12,1]又因为a<0,所以-2a 2a b=1,-a 2a b=-5,a=-6,b=1.故a=-6,b=1.注:解此类题,用此法的关键是问题可化归为Asin(ωx φ)或Aco…  相似文献   

15.
问题 设x∈(0,π/2),则函数y=225/4sin2x+2/cosx的最小值为_____. 此题是2007年全国高中数学联赛湖北赛区预赛第10题,竞赛组委会给出的标准答案如下: 解:因为x∈(0,π/2),所以sinx>0,cosx>0,设k>0,y=225/4sin2x+ksin2x+1/cosx+1/cosx+kcos2x-k≥15(√)2kk+3(√)3k-k①.等号成立当且仅当{225/4sin2x=ksin2x 1/cosx=kcos2x<=>{sin2x=15/2(√)2k cos2x=1/(√)3k2,此时15/2(√)2k+1/(√)3k2=1,设1/k=t6,则2t4+15t3-2=0,而2t4+ 15t3-2=2t4-t3+16t3-2=t3(2t-1)+2(2t-1)(4t2+ 2t+1)=(2t-1)(t3 +8t2 +4t +2),故(2t-1)(t3+8t2+4t+2)=0.  相似文献   

16.
1.求方程的根 例1 求满足方程2sin2x sinx-sin2x=3cosx的锐角x的值.(03年湖南省高数竞) 分析 对于同一单调区间内的两个变量x1,x2,若f(x1)=f(x2),则必有x1=x2. 解 因为 x为锐角,所以 cosx≠0.方程两边同除以cosx得 2sinx·tanx tanx-2sinx=3,即 (2sinx 1)(tanx-1)=2.因为 函数f(x)=(2sinx 1)(tanx-1)在(0,π/4)内f(x)<0,在[π/4,π/2)内严格单调递  相似文献   

17.
命题函数y=a/cosx b/sinx,(a、b∈R~ ),x∈(0,1/2π)的最小值为(((a~2)~(1/3) (b~2~(1/3))~3)~(1/2) 证明∵a~(1/3)cosx b~(1/3)sinx ≤ ((a~2)~(1/3) (b~2)~(1/3))~(1/2)(当且仅当x=arc tg(b/a)~(1/3)时等号成立), ∴((a~2)~(1/3) (b~2)~(1/3))~3)~(1/2)y≥a~(1/3)cosx b~3sinx)·(a/cosx b/sinx)≥(a~(1/6)(cosx)~(1/2)(a/cosx)~(1/2) b~(1/6)(sinx)~(1/2)·((b/sinx)~(1/2))~2=((a~2)~(1/3) (b~2)~(1/3))~2(当且仅当x=arc tg(b/a)~(1/3)时等号成立),即  相似文献   

18.
三角函数最值问题 ,其求法颇多 ,笔者根据多年的教学实践 ,将其化归为以下几种常见类型 ,供读者参考 .一、利用三角函数的值域 | sinx|≤ 1,| cosx|≤ 11. y =asinx +basinx +d或者 y =acosx +bccosx +d型例 1 求函数 y =3- 2 cosx2 +cosx 的最值 .解 :2 y +ycosx =3- 2 cosx,( 2 +y) cosx =3- 2 y,cosx =3- 2 y2 +y,∵ |cosx|≤ 1,∴ 3- 2 y2 +y ≤ 1,( 3- 2 y) 2≤ ( 2 +y) 2解得 13≤ y≤ 5,∴ ymax =5,ymin =13.点评 :此题利用反函数法求出 cosx的表达式后利用余弦函数的有界性求得最值 .2 .和积互化型例 2 求函数 y =sinx[sinx - sin…  相似文献   

19.
正余弦函数的有界性是指当 x∈ R时 ,有 |sinx|≤ 1 ,|cosx|≤ 1 .在解一类与正、余弦函数有关的题目中 ,其能注意到其有界这一性质 ,可使问题得以顺利解决 .下面通过一些例子说明这一性质的应用 .  1 求函数的值域或最大、最小值例 1 .求函数 y =( 2 cosx -1 ) / ( cosx 2 )的最大值及最小值 .解 :由 y =( 2 cosx -1 ) / ( cosx 2 )得 cosx =( 1 2 y) / ( 2 -y) .因为 |cosx|≤ 1 ,故 |( 1 2 y) / ( 2 -y) |≤ 1 .又因 3y2 8y -3≤ 0 ,则 -3≤ y≤ 1 / 3.从而函数的最大值为 1 / 3,最小值为 -3.例 2 .求函数 y =( 3 2 cosx sinx)…  相似文献   

20.
<正>求三角函数的值域或最值问题是一类常见的综合应用题,笔者根据自身学习情况,觉得有必要对这一类问题进行分类总结,并探究解题方法,以期能在高考中轻松应对。一、有界性法有些函数式可化成一个角的三角函数y=Asin(ωx+φ)形式,利用正(余)弦函数的有界性(|sinx|≤1,|cosx|≤1)求解,可分为如下四类:1.形如y=asinx+bcosx型的函数式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号