首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A practical finite-time command filtered backstepping control method is proposed in this paper for a microwave plasma chemical vapor deposition (MPCVD) reactor system. The MPCVD reactor system is modeled as a coupled nonlinear system with unknown control direction functions and unknown nonlinearities. To address the unknown nonlinearities, novel practical finite-time command filters are proposed to construct the estimations of such nonlinearities. On the other hand, an equivalent augmented system of the reactor system is proposed to address the design challenges that posed by the system unknown control direction functions. Additionally, it can be concluded that the proposed control method ensures practical finite-time stability of the reactor system tracking errors by using the practical finite-time Lyapunov stability criterion. Finally, the effectiveness of the approach is demonstrated through the simulation results.  相似文献   

2.
This work is concerned with the finite-time sliding mode control for a class of Markovian jump systems subject to actuator nonlinearities, where the elements in the transition rate matrix are uncertain or even completely unknown. A suitable sliding mode controller is designed such that the finite-time stochastic boundedness of state trajectories is attained during a given finite-time interval, in which two different robust terms are introduced for the known and unknown modes to deal with the effect of uncertain transition rates. Moreover, the connections among sliding functions under Markovian jumping for SMC systems are analyzed. Finally, some simulation results with a wheeled mobile manipulator are provided.  相似文献   

3.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

4.
This paper is concerned with the problems of set-based finite-time stability (SFTS) and set-based finite-time boundedness (SFTB) for both certain and uncertain linear time-varying systems. The concepts of SFTS and SFTB are defined. Different from existing results, sufficient conditions for SFTS and SFTB are directly derived from the basic definitions of finite-time stability (FTS) and finite-time boundedness (FTB) by using the convex hull technique rather than utilizing the weighted quadratic functions. Thus, more practical constraints on the system states can be dealt with. Furthermore, intervals, zonotopes and polytopes are employed to describe the typical compact convex sets. For linear uncertain systems, the uncertain time-varying state sets are assumed to be represented by interval matrices and matrix zonotopes, respectively. Finally, numerical examples are provided to illustrate the effectiveness of the main results.  相似文献   

5.
This paper researches the finite-time event-triggered containment control problem of multiple Euler–Lagrange systems (ELSs) with unknown control coefficients. To realize an accurate convergence time, the settling-time performance function is employed to ensures the steady-state and dynamic properties of the containment errors in the resulting system. Meanwhile, to handle unknown control coefficients, adaptive neural networks (ANNs) with an additional saturated term are designed, which removes the requirement of full rank control coefficients in traditional control methods. By establishing an event-triggered mechanism, a novel finite-time event-triggered containment control law is designed, which yields the semi-global practical finite-time stable (SGPFS) of the resulting closed-loop system without Zeno phenomenon according to the finite-time stability criterion. The effectiveness of the designed methodology is verified by simulation.  相似文献   

6.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

7.
This paper investigates adaptive finite-time practical consensus protocols for a class of second-order multiagent systems with a positive odd power, nonsymmetric input dead zone and uncertain dynamics under a directed communication topology. In this study, three major steps are employed to address the existence of the positive odd power, nonsymmetric input dead zone and uncertain dynamics. Overall, based on the technique of adding one power integrator, useful preliminary results are obtained by configuring a suitable fraction power. Furthermore, to circumvent input dead-zone nonlinearity, an adaptive fuzzy logic (FL) method is used to estimate the width of the dead zone. Finally, the difficulty in designing finite-time practical consensus protocols for the multiagent systems with uncertain dynamics is handled by using radial basis function neural networks (RBFNNs) to approximate the related unknown nonlinear functions. Then, given some reasonable assumptions, it is shown that finite-time practical consensus of the second-order multiagent systems is obtained by using the proposed distributed control protocols and adaptive laws. In addition, the proper approach for selecting parameters is provided such that the neighborhood position error and parameter estimate errors for each agent converge to predesigned small regions of the origin in a finite time. The effectiveness of the developed algorithm is finally validated through a numerical simulation.  相似文献   

8.
This paper investigates the finite-time stabilization for a class of upper-triangular switched nonlinear systems, where nonlinearities are allowed to be lower-order growing. Due to the special structure of the considered system, the presented methods for lower-triangular switched nonlinear systems in the literature can not be directly utilized. To solve the problem, a state feedback control law with a new structure is designed to guarantee the global finite-time stability of the closed-loop system under arbitrary switching signals by using the recursive design approach and the nested saturation method. A simulation example is provided to show the effectiveness of the proposed method.  相似文献   

9.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

10.
In this paper, the finite-time group consensus for a class of heterogeneous multi-agent systems (HMASs) with bounded disturbances is studied by designing a pinning control scheme with an integral sliding mode. For an HMAS without disturbance, a continuous finite-time consensus protocol with a pinning and grouping strategy is proposed. Under the designed control protocol, the HMAS achieves consensus according to the given grouping requirement in a finite time and the final states converge to the desired consistency values. The detailed theoretical proof is given on the strength of Lyapunov theory, LaSalle’s invariance principle and homogeneity with dilation principle. On this basis, this paper further introduces an integral sliding mode into finite-time group consensus protocol designed above such that the HMAS with one or more pinning agents can achieve accurate finite-time group consensus even if there exist uncertain bounded disturbances. It is noted that the control input is chattering-free. Two simulation examples are presented to illustrate the effectiveness of the proposed control schemes.  相似文献   

11.
This paper is concerned with finite-time stabilization of a class of pure-feedback systems with dead-zone input. A systematic design procedure is established to derive the finite-time controller. Firstly, to circumvent the difficulties arising from the nonaffine properties, through a change of coordinates and incorporating mean value theorem, a system transformation technique is introduced to convert the original nonaffine system into an affine one. Then, based on the strengthened finite-time Lyapunov stability theorem as well as utilizing the bounds of dead-zone parameters, the finite-time stabilizer is explicitly constructed via backstepping design approach. It is proven that the designed controller can ensure all the states of the closed-loop system converge to zero in a finite time and maintain at zero afterwards. The proposed design framework is also extended to finite-time stabilization of uncertain pure-feedback systems and finite-time tracking control of pure-feedback systems. The effectiveness of the theoretical results are finally demonstrated by a numerical example and a realistic example.  相似文献   

12.
Finite-time control for periodic systems with sensor nonlinearities and random input gains is addressed in this work. The variation of sensor nonlinearities is modeled by a Markov chain, and a stochastic variable is used to describe the influence of the actuator. A mode- and sensor nonlinearity-dependent non-fragile controller is designed to improve the performance and the non-fragility of the controller. The finite-time boundedness of the closed-loop system is ensured by a sufficient condition, the corresponding controller is then designed. Finally, the effectiveness of the developed results is illustrated by a numerical example.  相似文献   

13.
This paper studies the optimal finite-time passive control problem for a class of uncertain nonlinear Markovian jumping systems (MJSs). The Takagi and Sugeno (T–S) fuzzy model is employed to represent the nonlinear system with Markovian jump parameters and norm-bounded uncertainties. By selecting an appropriate Lyapunov-Krasovskii functional, it gives a sufficient condition for the existence of finite-time passive controller such that the uncertain nonlinear MJSs is stochastically finite-time bounded for all admissible uncertainties and satisfies the given passive control index in a finite time-interval. The sufficient condition on the existence of optimal finite-time fuzzy passive controller is formulated in the form of linear matrix inequalities and the designed algorithm is described as an optimization one. A numerical example is given at last to illustrate the effectiveness of the proposed design approach.  相似文献   

14.
In this paper, an adaptive neural control scheme is proposed for a class of unknown nonlinear systems with unknown sensor hysteresis. The radial basis function neural networks are employed to approximate the unknown nonlinearities and the backstepping technique is implemented to construct controllers. The difficulty of the control design lies in that the genuine states of the system are not available for feedback, which is caused by sensor hysteresis. The proposed control scheme eventually ensures the practical finite-time stability of the closed-loop system, which is proved by the Lyapunov theory. A numerical simulation example is included to verify the effectiveness of the developed approach.  相似文献   

15.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

16.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

17.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

18.
In this paper, we consider a regulation problem for a class of feedforward nonlinear systems with unknown control coefficients and unknown growth rate. More specifically, the unknown control coefficients are assumed to be time-varying and belong to ranges with unknown upper and lower bounds. Due to the described control coefficients with uncertain feedfoward nonlinearities, our considered system is the natural extension of the related existing results. In solving our control problem, a new adaptive controller is derived by constructing a Lyapunov function in backstepping-like procedure and utilizing appropriate parameters based on the gain scaling technique and Nussbaum function. The uniquely designed exponents of a dynamic gain overcome the difficulties caused from the unknown sign and unknown ranges of the control coefficients and uncertain nonlinearities and thus play a key role in system regulation. We give the rigorous system analysis and simulation results of the numerical example to certify our control method.  相似文献   

19.
This paper presents a simplified design methodology for robust event-driven tracking control of uncertain nonlinear pure-feedback systems with input quantization. All nonlinearities and quantization parameters are assumed to be completely unknown. Different from the existing event-driven control approaches for systems with completely unknown nonlinearities, the main contribution of this paper is to design a simple event-based tracking scheme with preassigned performance, without the use of adaptive function approximators and adaptive mirror models. It is shown in the Lyapunov sense that the proposed event-driven low-complexity tracker consisting of nonlinearly transformed error surfaces and a triggering condition can achieve the preselected transient and steady-state performance of control errors in the presence of the input quantization.  相似文献   

20.
This paper studies the problem of finite-time formation tracking control for networked nonaffine nonlinear systems with unmeasured dynamics and unknown uncertainties/disturbances under directed topology. A unified distributed control framework is proposed by integrating adaptive backstepping control, dynamic gain control and dynamic surface control based on finite-time theory and consensus theory. Auxiliary dynamics are designed to construct control gains with non-Lipschitz dynamics so as to guarantee finite-time convergence of formation errors. Adaptive control is used to compensate for uncertain control efforts of the transformed systems derived from original nonaffine systems. It is shown that formation tracking is achieved during a finite-time period via the proposed controller, where fractional power terms are only associated with auxiliary dynamics instead of interacted information among the networked nonlinear systems in comparison with most existing finite-time cooperative controllers. Moreover, the continuity of the proposed controller is guaranteed by setting the exponents of fractional powers to an appropriate interval. It is also shown that the improved dynamic surface control method could guarantee finite-time convergence of formation errors, which could not be accomplished by conventional dynamic surface control. Finally, simulation results show the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号